969 resultados para Time domains
Resumo:
The studies in the thesis were derived from a program of research focused on centre-based child care in Australia. The studies constituted an ecological analysis as they examined proximal and distal factors which have the potential to affect children's developmental opportunities (Bronfenbrenner, 1979). The project was conducted in thirty-two child care centres located in south-east Queensland. Participants in the research included staff members at the centres, families using the centres and their children. The first study described the personal and professional characteristics of one hundred and forty-four child care workers, as well as their job satisfaction and job commitment. Factors impinging on the stability of care afforded to children were examined, specifically child care workers' intentions to leave their current position and actual staff turnover at a twelve month follow-up. This is an ecosystem analysis (Bronfenbrenner & Crouter, 1983), as it examined the world of work for carers; a setting not directly involving the developing child, but which has implications for children's experiences. Staff job satisfaction was focused on working with children and other adults, including parents and colleagues. Involvement with children was reported as being the most rewarding aspect of the work. This intrinsic satisfaction was enough to sustain caregivers' efforts to maintain their employment in child care programs. It was found that, while improving working conditions may help to reduce turnover, it is likely that moderate turnover rates will remain as child care staff work in relatively small centres and they leave in order to improve career prospects. Departure from a child care job appeared to be as much about improving career opportunities or changing personal circumstances, as it was about poor wages and working conditions. In the second study, factors that influence maternal satisfaction with child care arrangements were examined. The focus included examination of the nature and qualities of parental interaction with staff. This was a mesosystem analysis (Bronfenbrenner & Crouter, 1983), as it considered the links between family and child care settings. Two hundred and twenty-two questionnaires were returned from mothers whose children were enrolled in the participating centres. It was found that maternal satisfaction with child care encompassed the domains of child-centred and parent-centred satisfaction. The nature and range of responses in the quantitative and qualitative data indicated that these parents were genuinely satisfied with their children's care. In the prediction of maternal satisfaction with child care, single parents, mothers with high role satisfaction, and mothers who were satisfied with the frequency of staff contact and degree of supportive communication had higher levels of satisfaction with their child care arrangements. The third study described the structural and process variations within child care programs and examined program differences for compliance with regulations and differences by profit status of the centre, as a microsystem analysis (Bronfenbrenner, 1979). Observations were made in eighty-three programs which served children from two to five years. The results of the study affirmed beliefs that nonprofit centres are superior in the quality of care provided, although this was not to a level which meant that the care in for-profit centres was inadequate. Regulation of structural features of child care programs, per se, did not guarantee higher quality child care as measured by global or process indicators. The final study represented an integration of a range of influences in child care and family settings which may impact on development. Features of child care programs which predict children's social and cognitive development, while taking into account child and family characteristics, were identified. Results were consistent with other research findings which show that child and family characteristics and child care quality predict children's development. Child care quality was more important to the prediction of social development, while family factors appeared to be more predictive of cognitive/language development. An influential variable predictive of development was the period of time which the child had been in the centre. This highlighted the importance of the stability of child care arrangements. Child care quality features which had most influence were global ratings of the qualities of the program environment. However, results need to be interpreted cautiously as the explained variance in the predictive models developed was low. The results of these studies are discussed in terms of the implications for practice and future research. Considerations for an expanded view of ecological approaches to child care research are outlined. Issues discussed include the need to generate child care research which is relevant to social policy development, the implications of market driven policies for child care services, professionalism and professionalisation of child care work, and the need to reconceptualise child care research when the goal is to develop greater theoretical understanding about child care environments and developmental processes.
Resumo:
Vigilance declines when exposed to highly predictable and uneventful tasks. Monotonous tasks provide little cognitive and motor stimulation and contribute to human errors. This paper aims to model and detect vigilance decline in real time through participant’s reaction times during a monotonous task. A lab-based experiment adapting the Sustained Attention to Response Task (SART) is conducted to quantify the effect of monotony on overall performance. Then relevant parameters are used to build a model detecting hypovigilance throughout the experiment. The accuracy of different mathematical models are compared to detect in real-time – minute by minute - the lapses in vigilance during the task. We show that monotonous tasks can lead to an average decline in performance of 45%. Furthermore, vigilance modelling enables to detect vigilance decline through reaction times with an accuracy of 72% and a 29% false alarm rate. Bayesian models are identified as a better model to detect lapses in vigilance as compared to Neural Networks and Generalised Linear Mixed Models. This modelling could be used as a framework to detect vigilance decline of any human performing monotonous tasks.
Analytical modeling and sensitivity analysis for travel time estimation on signalized urban networks
Resumo:
This paper presents a model for estimation of average travel time and its variability on signalized urban networks using cumulative plots. The plots are generated based on the availability of data: a) case-D, for detector data only; b) case-DS, for detector data and signal timings; and c) case-DSS, for detector data, signal timings and saturation flow rate. The performance of the model for different degrees of saturation and different detector detection intervals is consistent for case-DSS and case-DS whereas, for case-D the performance is inconsistent. The sensitivity analysis of the model for case-D indicates that it is sensitive to detection interval and signal timings within the interval. When detection interval is integral multiple of signal cycle then it has low accuracy and low reliability. Whereas, for detection interval around 1.5 times signal cycle both accuracy and reliability are high.
Resumo:
Typical daily decision-making process of individuals regarding use of transport system involves mainly three types of decisions: mode choice, departure time choice and route choice. This paper focuses on the mode and departure time choice processes and studies different model specifications for a combined mode and departure time choice model. The paper compares different sets of explanatory variables as well as different model structures to capture the correlation among alternatives and taste variations among the commuters. The main hypothesis tested in this paper is that departure time alternatives are also correlated by the amount of delay. Correlation among different alternatives is confirmed by analyzing different nesting structures as well as error component formulations. Random coefficient logit models confirm the presence of the random taste heterogeneity across commuters. Mixed nested logit models are estimated to jointly account for the random taste heterogeneity and the correlation among different alternatives. Results indicate that accounting for the random taste heterogeneity as well as inter-alternative correlation improves the model performance.
Resumo:
This paper presents a travel time prediction model and evaluates its performance and transferability. Advanced Travelers Information Systems (ATIS) are gaining more and more importance, increasing the need for accurate, timely and useful information to the travelers. Travel time information quantifies the traffic condition in an easy to understand way for the users. The proposed travel time prediction model is based on an efficient use of nearest neighbor search. The model is calibrated for optimal performance using Genetic Algorithms. Results indicate better performance by using the proposed model than the presently used naïve model.
Resumo:
This paper presents a methodology for estimation of average travel time on signalized urban networks by integrating cumulative plots and probe data. This integration aims to reduce the relative deviations in the cumulative plots due to midlink sources and sinks. During undersaturated traffic conditions, the concept of a virtual probe is introduced, and therefore, accurate travel time can be obtained when a real probe is unavailable. For oversaturated traffic conditions, only one probe per travel time estimation interval—360 s or 3% of vehicles traversing the link as a probe—has the potential to provide accurate travel time.
Resumo:
We propose a model-based approach to unify clustering and network modeling using time-course gene expression data. Specifically, our approach uses a mixture model to cluster genes. Genes within the same cluster share a similar expression profile. The network is built over cluster-specific expression profiles using state-space models. We discuss the application of our model to simulated data as well as to time-course gene expression data arising from animal models on prostate cancer progression. The latter application shows that with a combined statistical/bioinformatics analyses, we are able to extract gene-to-gene relationships supported by the literature as well as new plausible relationships.