795 resultados para Tiitta, Allan
Resumo:
Host plants of Cerambycidae and Vesperidae (Coleoptera, Chrysomeloidea) from South America. This paper offers a contribution to the knowledge on host plants of Cerambycidae and Vesperidae (Coleoptera, Chrysomeloidea) from South America. A total of 211 species of longhorn beetles belonging to 111 genera, 49 tribes, five subfamilies and two families are presented with records of host plants. Data on 259 species of host plants distributed among 188 genera and 69 families are listed with the beetle species.
Resumo:
Soil physical quality is essential to global sustainability of agroecosystems, once it is related to processes that are essential to agricultural crop development. This study aimed to evaluate physical attributes of a Yellow Latossol under different management systems in the savanna area in the state of Piaui. This study was developed in Uruçuí southwest of the state of Piauí. Three systems of soil management were studied: an area under conventional tillage (CT) with disk plowi and heavy harrow and soybean crop; an area under no-tillage with soybean-maize rotation and millet as cover crop (NT + M); two areas under Integrated Crop-Livestock System, with five-month pasture grazing and soybean cultivation and then continuous pasture grazing (ICL + S and ICL + P, respectively). Also, an area under Native Forest (NF) was studied. The soil depths studied were 0.00-0.05, 0.05-0.10 and 0.10-0.20 m. Soil bulk density, as well as porosity and stability of soil aggregates were analyzed as physical attributes. Anthropic action has changed the soil physical attributes, in depth, in most systems studied, in comparison to NF. In the 0.00 to 0.05 m depth, ICL + P showed higher soil bulk density value. As to macroporosity, there was no difference between the management systems studied and NF. The management systems studied changed the soil structure, having, as a result, a small proportion of soil in great aggregate classes (MWD). Converting native forest into agricultural production systems changes the soil physical quality. The Integrated Crop-Livestock System did not promote the improvement in soil physical quality.
Resumo:
O P é um dos macronutrientes primários essenciais para a produção vegetal. Apesar de ser o menos absorvido pelas plantas, é o mais utilizado nas adubações nos solos das regiões tropicais e subtropicais úmidas. Isso ocorre porque o P tem grande interação com os óxidos de Fe e Al, abundantes nessas condições. O estudo dessas interações é importante para se conhecer melhor a relação entre os constituintes do solo e a adsorção de P. O objetivo deste trabalho foi avaliar como os componentes da fração argila antes e após a dissolução seletiva dos óxidos de Fe dos solos e alguns de seus atributos mineralógicos influenciam na capacidade máxima de adsorção de P (CMAP). Para isso, foram utilizadas 20 amostras da fração argila isolada do horizonte B de solos do Estado do Paraná, as quais foram caracterizadas em seus atributos químicos e mineralógicos. Nesses solos, a CMAP e a área superficial específica externa (ASE) foram determinadas na fração argila natural (CMAP, ASE) e desferrificada (CMAPd, ASEd). Os valores de CMAP não apresentaram tendência definida com a dissolução seletiva dos óxidos de Fe. Em 13 amostras, a CMAPd foi maior do que a CMAP. Na fração argila natural, os teores de Fe d variaram entre 25,89 e 108,79, e os de Al d, entre 6,69 e 30,09 g kg-1. As formas de Al livre (Al d) e de baixo grau de cristalinidade (Al o) apresentaram maiores coeficientes de correlação com a CMAP e com a CMAPd (r = 0,66 e 0,70, respectivamente). Entre os atributos químicos analisados, o P remanescente (Prem) pode ser utilizado na estimativa da CMAP.
Resumo:
Recent studies assessing the role of biological diversity for ecosystem functioning indicate that the diversity of functional traits and the evolutionary history of species in a community, not the number of taxonomic units, ultimately drives the biodiversity-ecosystem-function relationship. Here, we simultaneously assessed the importance of plant functional trait and phylogenetic diversity as predictors of major trophic groups of soil biota (abundance and diversity), six years from the onset of a grassland biodiversity experiment. Plant functional and phylogenetic diversity were generally better predictors of soil biota than the traditionally used species or functional group richness. Functional diversity was a reliable predictor for most biota, with the exception of soil microorganisms, which were better predicted by phylogenetic diversity. These results provide empirical support for the idea that the diversity of plant functional traits and the diversity of evolutionary lineages in a community are important for maintaining higher abundances and diversity of soil communities.
Resumo:
Potassium participates in the essential processes in plant physiology, however, the effects of K sources on plant metabolism have been little studied. Also, in certain cases, K sources and concentrations may cause undesirable effects, e.g., soil salinization. The objective was to evaluate the effect of K sources and levels on the enzyme activity of the antioxidant system and protein content in eggplant (Solanum melongena L.) leaves and to determine the most suitable K sources for these physiological characteristics. The experiment was conducted in randomized blocks, in a 2 × 4 factorial design, consisting of two K sources (KCl and K2SO4) and rates (250, 500, 750, and 1000 kg ha-1 K2O), with four replications. The following variables were evaluated: plant height, number of leaves per plant, superoxide dismutase (SOD), catalase (CAT), and leaf protein content. There was an increase in CAT activity with increasing K levels until 30 days after transplanting (DAT), when K2SO4 was applied and until 60 DAT, when KCl was used; after this period, the enzyme activity decreased under both sources. The activity of SOD increased in the presence of KCl, but was reduced with the application of K2SO4. For both K sources, increasing rates reduced the protein content and number of leaves per plant, and this reduction was greater under KCl application. Thus it was concluded that KCl tends more strongly to salinize the soil than K2SO4. Both for KCl and for K2SO4, the increasing rates adversely affected the activities of CAT and SOD and the levels of leaf protein in eggplant. The potential of KCl to reduce the enzyme activity of SOD and CAT, leaf protein content and plant growth of eggplant was stronger than that of K2SO4.
Resumo:
Vuoden 2002 oikeustieteilijäksi valitun Allan Serlachius-Särkilahti -palkinnon saajan puhe Oikeuskulttuurin päivässä 8.1..2002