776 resultados para Thermoplastic Conducting Composites
Resumo:
The thesis describes the development and evaluation of epoxy resin as interfacial bonding agent for short Nylon-6 fiber elastomer composites. Epoxy resin is well known for its adhesive property. The potential use of it as interfacial bonding agent in short fiber composite is not explored yet. Three rubbers viz., acrylonitrile butadiene rubber (NBR), Neoprene rubber (CR) and styrene butadiene rubber (SBR) were selected and different fiber loading were tried. The resin concentration was optimized for each fiber loading with respect to cure characteristics and mechanical properties. Rheological characteristics and thermal degradation of the composites containing different fiber loading and different resin concentrations were studied in detail to find the effect of epoxy resin bonding system. The mechanical properties were studied in detail. The short Nylon -6 fiber improved most of the mechanical properties of all the three rubbers. Tensile strength showed a dip at 10 phr fiber loading in the case of CR while it was continuously increased with fiber loading in the case of NBR and SBR. All the composites showed anisotropy in mechanical properties. The epoxy resin is an effective bonding agent for short Nylon -6 fiber reinforced NBR and CR composites. Epoxy resin improved tensile strength, abrasion resistance and modulus of these composites. SEM studies confirmed the improved bonding of fiber and matrix in the presence of epoxy bonding agent. Epoxy resin was not effective as bonding agent in the case of short Nylon fiber- SBR composite. From the rheological studies of the composites with and without bonding agent it was observed that all the composite exhibited pseudoplasticity, which decreased with temperature. At higher shear rates all the mixes showed plug flow. SEM pictures showed that maximum orientation of fibers occured at a shear rate, just before the onset of plug flow. The presence of fiber reduced the temperature sensitivity of the flow at a given shear rate. Die swell was reduced in the presence of fiber. Shear viscosity of the composite was increased in the presence of resin. Die swell was increased in the presence of epoxy resin for composites at all shear rates. The thermal degradation of NBR and SBR composites with and without bonding agent followed single step degradation pattern. Thermal stability of the composites was improved in the presence of bonding agent. The degradation of virgin elastomer and the composites followed first order kinetics.
Resumo:
The study shows that standard plastics like polypropylene and high density polyethylene can be reinforced by adding nylon short fibres. Compared to the conventional glass reinforced thermoplastics this novel class of reinforced thermoplastics has the major advantage of recyclability. Hence such composites represent a new spectrum of recyclable polymer composites. The fibre length and fibre diameter used for reinforcement are critical parameters While there is a critical fibre length below which no effective reinforcement takes place, the reinforcement improves when the fibre diameter decreases due to increased surface area.While the fibres alone give moderate reinforcement, chemical modification of the matrix can further improve the strength and modulus of the composites. Maleic anhydride grafting in presence of styrene was found to be the most efficient chemical modification. While the fibre addition enhances the viscosity of the melt at lower shear rates, the enhancement at higher shear rate is only marginal. This shows that processing of the composite can be done in a similar way to that of the matrix polymer in high shear operations such as injection moulding. Another significant observation is the decrease in melt viscosity of the composite upon grafting. Thus chemical modification of matrix makes processing of the composite easier in addition to improving the mechanical load bearing capacity.For the development of a useful short fibre composite, selection of proper materials, optimum design with regard to the particular product and choosing proper processing parameters are most essential. Since there is a co-influence of many parameters, analytical solutions are difficult. Hence for selecting proper processing parameters 'rnold flow' software was utilized. The orientation of the fibres, mechanical properties, temperature profile, shrinkage, fill time etc. were determined using the software.Another interesting feature of the nylon fibre/PP and nylon fibre/HDPE composites is their thermal behaviour. Both nylon and PP degrade at the same temperature in single steps and hence the thermal degradation behaviour of the composites is also being predictable. It is observed that the thermal behaviour of the matrix or reinforcement does not affect each other. Almost similar behaviour is observed in the case of nylon fibre/HDPE composites. Another equally significant factor is the nucleating effect of nylon fibre when the composite melt cools down. In the presence of the fibre the onset of crystallization occurs at slightly higher temperature.When the matrix is modified by grafting, the onset of crystallization occurs at still higher temperature. Hence it may be calculated that one reason for the improvement in mechanical behaviour of the composite is the difference in crystallization behaviour of the matrix in presence of the fibre.As mentioned earlier, a major advantage of these composites is their recyclability. Two basic approaches may be employed for recycling namely, low temperature recycling and high temperature recycling. In the low temperature recycling, the recycling is done at a temperature above the melting point of the matrix, but below that of the fibres while in the high temperature route. the recycling is done at a temperature above the melting points of both matrix and fibre. The former is particularly interesting in that the recycled material has equal or even better mechanical properties compared to the initial product. This is possible because the orientation of the fibre can improve with successive recycling. Hence such recycled composites can be used for the same applications for which the original composite was developed. In high temperature recycling, the composite is converted into a blend and hence the properties will be inferior to that of the original composite, but will be higher than that of the matrix material alone.
Resumo:
Discovery of coherent optical sources four decades ago has revolutionized all fields of scientific development. One of the path breaking applications of lasers is the emergence of various thermo optic techniques to unravel some of the mysteries of light matter interactions.Thermo optic technique is a valuable tool to evaluate optical and thermal properties of materials in solid,liquid and gaseous states .This technique can also be employed effectively in nondestructive quality evaluation. In this doctoral thesis , the use of photothermal techniques based on photoacoustic and photothermal deflection phenomena for the study of certain class of photonics materials such as semiconductors, nano metal dispersed ceramics, composites of conducting polymers and liquid crystals is elaborated.
Resumo:
Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology.
Resumo:
Magnetism and magnetic materials have been an ever-attractive subject area for engineers and scientists alike because of its versatility in finding applications in useful devices. They find applications in a host of devices ranging from rudimentary devices like loud speakers to sophisticated gadgets like waveguides and Magnetic Random Access Memories (MRAM).The one and only material in the realm of magnetism that has been at the centre stage of applications is ferrites and in that spinel ferrites received the lions share as far as practical applications are concerned.It has been the endeavour of scientists and engineers to remove obsolescence and improve upon the existing so as to save energy and integrate in to various other systems. This has been the hallmark of material scientists and this has led to new materials and new technologies.In the field of ferrites too there has been considerable interest to devise new materials based on iron oxides and other compounds. This means synthesising ultra fine particles and tuning its properties to device new materials. There are various preparation techniques ranging from top- down to bottom-up approaches. This includes synthesising at molecular level, self assembling,gas based condensation. Iow temperature eo-precipitation, solgel process and high energy ball milling. Among these methods sol-gel process allows good control of the properties of ceramic materials. The advantage of this method includes processing at low temperature. mixing at the molecular level and fabrication of novel materials for various devices.Composites are materials. which combine the good qualities of one or more components. They can be prepared in situ or by mechanical means by the incorporation of fine particles in appropriate matrixes. The size of the magnetic powders as well as the nature of matrix affect the processability and other physical properties of the final product. These plastic/rubber magnets can in turn be useful for various applications in different devices. In applications involving ferrites at high frequencies, it is essential that the material possesses an appropriate dielectric permittivity and suitable magnetic permeability. This can be achieved by synthesizing rubber ferrite composites (RFC's). RFCs are very useful materials for microwave absorptions. Hence the synthesis of ferrites in the nanoregirne.investigations on their size effects on the structural, magnetic, and electrical properties and the incorporation of these ferrites into polymer matrixes assume significance.In the present study, nano particles of NiFe204, Li(!5Fe2S04 and Col-e-O, are prepared by sol gel method. By appropriate heat treatments, particles of different grain sizes are obtained. The structural, magnetic and electrical measurements are evaluated as a function of grain size and temperature. NiFel04 prepared in the ultrafine regime are then incorporated in nitrile rubber matrix. The incorporation was carried out according to a specific recipe and for various loadings of magnetic fillers. The cure characteristics, magnetic properties, electrical properties and mechanical properties of these elastomer blends are carried out. The electrical permittivity of all the rubber samples in the X - band are also conducted.
Resumo:
In the present study the preparation and characterisation of rubber ferrite composites (RFC) containing barium ferrite (BaF) and strontium ferrite (SrF) have been dealt with. The incorporation of the hard ferrites into natural and nitrile rubber was carried out according to a specific recipe for various loadings of magnetic fillers. For this, the ferrite materials namely barium ferrite and strontium ferrite having the general formula MO6Fe2O3 have been prepared by the conventional ceramic techniques. After characterisation they were incorporated into the natural and nitrile rubber matrix by mechanical method. Carbon black was also incorporated at different loading into the rubber ferrite composites to study its effect on various properties. The cure characteristics, mechanical, dielectric and magnetic properties of these composites were evaluated. The ac electrical conductivity of both the ceramic ferrites and rubber ferrite composites were also calculated using a simple relation. The investigations revealed that the rubber ferrite composites with the required dielectric and magnetic properties can be obtained by the incorporation of ferrite fillers into the rubber matrix, without compromising much on the processability and mechanical properties.
Resumo:
Material synthesizing and characterization has been one of the major areas of scientific research for the past few decades. Various techniques have been suggested for the preparation and characterization of thin films and bulk samples according to the industrial and scientific applications. Material characterization implies the determination of the electrical, magnetic, optical or thermal properties of the material under study. Though it is possible to study all these properties of a material, we concentrate on the thermal and optical properties of certain polymers. The thermal properties are detennined using photothermal beam deflection technique and the optical properties are obtained from various spectroscopic analyses. In addition, thermal properties of a class of semiconducting compounds, copper delafossites, arc determined by photoacoustic technique.Photothermal technique is one of the most powerful tools for non-destructive characterization of materials. This forms a broad class of technique, which includes laser calorimetry, pyroelectric technique, photoacollstics, photothermal radiometric technique, photothermal beam deflection technique etc. However, the choice of a suitable technique depends upon the nature of sample and its environment, purpose of measurement, nature of light source used etc. The polynler samples under the present investigation are thermally thin and optically transparent at the excitation (pump beam) wavelength. Photothermal beam deflection technique is advantageous in that it can be used for the detennination of thermal diffusivity of samples irrespective of them being thermally thick or thennally thin and optically opaque or optically transparent. Hence of all the abovementioned techniques, photothemlal beam deflection technique is employed for the successful determination of thermal diffusivity of these polymer samples. However, the semi conducting samples studied are themlally thick and optically opaque and therefore, a much simpler photoacoustic technique is used for the thermal characterization.The production of polymer thin film samples has gained considerable attention for the past few years. Different techniques like plasma polymerization, electron bombardment, ultra violet irradiation and thermal evaporation can be used for the preparation of polymer thin films from their respective monomers. Among these, plasma polymerization or glow discharge polymerization has been widely lIsed for polymer thin fi Im preparation. At the earlier stages of the discovery, the plasma polymerization technique was not treated as a standard method for preparation of polymers. This method gained importance only when they were used to make special coatings on metals and began to be recognized as a technique for synthesizing polymers. Thc well-recognized concept of conventional polymerization is based on molecular processcs by which thc size of the molecule increases and rearrangemcnt of atoms within a molecule seldom occurs. However, polymer formation in plasma is recognized as an atomic process in contrast to the above molecular process. These films are pinhole free, highly branched and cross linked, heat resistant, exceptionally dielectric etc. The optical properties like the direct and indirect bandgaps, refractive indices etc of certain plasma polymerized thin films prepared are determined from the UV -VIS-NIR absorption and transmission spectra. The possible linkage in the formation of the polymers is suggested by comparing the FTIR spectra of the monomer and the polymer. The thermal diffusivity has been measured using the photothermal beam deflection technique as stated earlier. This technique measures the refractive index gradient established in the sample surface and in the adjacent coupling medium, by passing another optical beam (probe beam) through this region and hence the name probe beam deflection. The deflection is detected using a position sensitive detector and its output is fed to a lock-in-amplifIer from which the amplitude and phase of the deflection can be directly obtained. The amplitude and phase of the deflection signal is suitably analyzed for determining the thermal diffusivity.Another class of compounds under the present investigation is copper delafossites. These samples in the form of pellets are thermally thick and optically opaque. Thermal diffusivity of such semiconductors is investigated using the photoacoustic technique, which measures the pressure change using an elcctret microphone. The output of the microphone is fed to a lock-in-amplificr to obtain the amplitude and phase from which the thermal properties are obtained. The variation in thermal diffusivity with composition is studied.
Resumo:
Three dimensional (3D) composites are strong contenders for the structural applications in situations like aerospace,aircraft and automotive industries where multidirectional thermal and mechanical stresses exist. The presence of reinforcement along the thickness direction in 3D composites,increases the through the thickness stiffness and strength properties.The 3D preforms can be manufactured with numerous complex architecture variations to meet the needs of specific applications.For hot structure applications Carbon-Carbon(C-C) composites are generally used,whose property variation with respect to temperature is essential for carrying out the design of hot structures.The thermomechanical behavior of 3D composites is not fully understood and reported.The methodology to find the thermomechanical properties using analytical modelling of 3D woven,3D 4-axes braided and 3D 5-axes braided composites from Representative Unit Cells(RUC's) based on constitutive equations for 3D composites has been dealt in the present study.High Temperature Unidirectional (UD) Carbon-Carbon material properties have been evaluated using analytical methods,viz.,Composite cylinder assemblage Model and Method of Cells based on experiments carried out on Carbon-Carbon fabric composite for a temparature range of 300 degreeK to 2800degreeK.These properties have been used for evaluating the 3D composite properties.From among the existing methods of solution sequences for 3D composites,"3D composite Strength Model" has been identified as the most suitable method.For thegeneration of material properies of RUC's od 3D composites,software has been developed using MATLAB.Correlaton of the analytically determined properties with test results available in literature has been established.Parametric studies on the variation of all the thermomechanical constants for different 3D performs of Carbon-Carbon material have been studied and selection criteria have been formulated for their applications for the hot structures.Procedure for the structural design of hot structures made of 3D Carbon-Carbon composites has been established through the numerical investigations on a Nosecap.Nonlinear transient thermal and nonlinear transient thermo-structural analysis on the Nosecap have been carried out using finite element software NASTRAN.Failure indices have been established for the identified performs,identification of suitable 3D composite based on parametric studies on strength properties and recommendation of this material for Nosecap of RLV based on structural performance have been carried out in this Study.Based on the 3D failure theory the best perform for the Nosecap has been identified as 4-axis 15degree braided composite.
Resumo:
The present study was undertaken to prepare nanosilica by a simple cost effective means and to use it as a potential nanomodifier in thermoplastic matrices and to develop useful composites. Nanosilica was prepared from sodium silicate and dilute hydrochloric acid by polymer induced crystallization technique under controlled conditions. The silica surface was modified by silane coupling agent to decrease the agglomeration and thus to increase the reinforcement with polymer. The pristine nanosilica and modified nanosilica were used to make nano-micro hybrid composites. Short glass fibres and nylon fibres were used as microfillers. The hybrid nanocomposites based on Polypropylene (PP) and High density poly ethylene (HOPE) are prepared. The mechanical, thermal, crystallization and dynamic mechanical properties of the composites are evaluated.
Resumo:
Precipitated silica is the most promising alternative for carbon black in tyre tread compounds due to its improved performance in terms of rolling resistance and wet grip.But its poor processability is a serious limitation to its commercial application.This thesis suggests a novel route for the incorporation of silica in rubbers,i.e.,precipitation of silica in rubber latex followed by coagulation of the latex to get rubber-silica maseterbatch.Composites with in situ precipitated silica showed improved processability and mechanical properties,when compared to conventional silica composites.
Resumo:
In the present study, radio frequency plasma polymerization technique is used to prepare thin films of polyaniline, polypyrrole, poly N-methyl pyrrole and polythiophene. The thermal characterization of these films is carried out using transverse probe beam deflection method. Electrical conductivity and band gaps are also determined. The effect of iodine doping on electrical conductivity and the rate of heat diffusion is explored.Bulk samples of poyaniline and polypyrrole in powder form are synthesized by chemical route. Open photoacoustic cell configuration is employed for the thermal characterization of these samples. The effect of acid doping on heat diffusion in these bulk samples of polyaniline is also investigated. The variation of electrical conductivity of doped polyaniline and polypyrrole with temperature is also studied for drawing conclusion on the nature of conduction in these samples. In order to improve the processability of polyaniline and polypyrrole, these polymers are incorporated into a host matrix of poly vinyl chloride. Measurements of thermal diffusivity and electrical conductivity of these samples are carried out to investigate the variation of these quantities as a function of the content of polyvinyl chloride.
Resumo:
The thesis entitled "Sol-Gel Alumina Nano Composites for Functional Applications" investigate sol-gel methods of synthesis of alumina nanocomposites special reference to alumina-aluminium titanate and alumina-lanthanum phosphate composites. The functional properties such as thermal expansion coefficient and thermal shock resistance, machinability of composites as well as thermal protection are highlighted in addition to novel approach in synthesis of composites.A general introduction of alumina matrix composites materials, followed by brief coverage of alumina-aluminium titanate and alumina-lanthanum phosphate composites is highlight of the first chapter. The second chapter deals with the sol-gel synthesis of aluminium titanate and alumina-aluminium titanate composite. The synthesis of machinable substrate, based on alumina and lanthanum phosphate forms the basis of the third chapter. The fourth chapter describes the sol-gel coating of mullite on SiC substrate for the possible gas filtration application.
Resumo:
This study was undertaken in order to upgrade blends of HDPE and PP, two of the most widely used standard plastics so as to widen their application spectrum. Dicumyl peroxide was used as the modifier for the upgradation. Optimum concentration of dicumyl peroxide required for modification was detennined by measurement of mechanical, rheological, thermal and morphological properties. Selected blends were used to prepare recyclable composites with nylon clothes by compression moulding. The composites were characterized by measurement of mechanical and thermal properties. The composites were recycled and the mechanical propertics of the recycled material were determined.
Resumo:
The aim of this investigation is to study the effectiveness of isora fibre as reinforcement material in short and long forms, for unsaturated polyester and epoxy resins.Studies on the optimization of fibre length and fibre loading of randomly oriented isora-polyester composite are described.The salient features of the alkali treatment of short isora fibre on the properties of randomly oriented isora-polyester composite are outlined in this thesis.The effect of surface modification of the hydrophilic isora fibre by different chemical treatments on the properties of randomly oriented isora-polyester composite is outlined.The properties of oriented and randomly oriented isora fibre reinforced epoxy composites with special reference to the effect of fibre loading are reported and also the dynamic mechanical properties ofthe oriented and randomly oriented isora-polyester and isora-epoxy composites are presented and the water absorption kinetics of oriented and randomly oriented isora-polyester composites and oriented isoraepoxy composites are given. The effect of hot air oven aging on the tensile and flexural properties of oriented isora-polyester and isora-epoxy composites are also reported in this thesis.
Resumo:
Research in the field of polymer modified cement has been carried out for the last 70 years or more. Polymers are mostly used to enhance durability and sustainability of cement concrete and in combination with classical construction materials a synergistic effect is obtained. In this work different polymers were added to Portland cement in various proportions and the mechanical and chemical resistance properties of the resultant composites when exposed to chemical environments were studied. Microstructural studies were also carried out to investigate the morphology of the composite and analyse the nature of interactions taking place between the cement and polymer phases. Though most polymers did not improve the compressive strength of the cement paste, it was found that they enhanced the resistance of the virgin cement paste to external chemical environments. The polymers seal the pores in the cement matrix and bridge the microcracks within the composite. Some of the polymers underwent chemical interactions with the cement paste thereby interfering in the hydration of cement. Polymers also decreased the leachability of water soluble components of virgin cement resulting in composites having improved durability. An attempt to correlate the structure of the polymers with the properties of the resultant composites is also presented.