948 resultados para The Folding Wife
Resumo:
Dr. Alfred Stern probably standing far left; Paula Wallerstein nee Molling seated in center
Resumo:
Dedication: Freundlichste Erinnerung an Herrn Prof. Einstein und seine Frau Gemahlin. I-Jing Wang, Shanghai, China
Resumo:
Digital Image
Resumo:
Digital Image
Resumo:
Digital image
Resumo:
The present study analyses the traffic of Hsp150 fusion proteins through the endoplasmic reticulum (ER) of yeast cells, from their post-translational translocation and folding to their exit from the ER via a selective COPI-independent pathway. The reporter proteins used in the present work are: Hsp150p, an O-glycosylated natural secretory protein of Saccharomyces cerevisiae, as well as fusion proteins consisting of a fragment of Hsp150 that facilitates in the yeast ER proper folding of heterologous proteins fused to it. It is thought that newly synthesized polypeptides are kept in an unfolded form by cytosolic chaperones to facilitate the post-translational translocation across the ER membrane. However, beta-lactamase, fused to the Hsp150 fragment, folds in the cytosol into bioactive conformation. Irreversible binding of benzylpenicillin locked beta-lactamase into a globular conformation, and prevented the translocation of the fusion protein. This indicates that under normal conditions the beta-lactamase portion unfolds for translocation. Cytosolic machinery must be responsible for the unfolding. The unfolding is a prerequisite for translocation through the Sec61 channel into the lumen of the ER, where the polypeptide is again folded into a bioactive and secretion-competent conformation. Lhs1p is a member of the Hsp70 family, which functions in the conformational repair of misfolded proteins in the yeast ER. It contains Hsp70 motifs, thus it has been thought to be an ATPase, like other Hsp70 members. In order to understand its activity, authentic Lhs1p and its recombinant forms expressed in E. coli, were purified. However, no ATPase activity of Lhs1p could be detected. Nor could physical interaction between Lhs1p and activators of the ER Hsp70 chaperone Kar2p, such as the J-domain proteins Sec63p, Scj1p, and Jem1p and the nucleotide exchange factor Sil1p, be demonstrated. The domain structure of Lhs1p was modelled, and found to consist of an ATPase-like domain, a domain resembling the peptide-binding domain (PBD) of Hsp70 proteins, and a C-terminal extension. Crosslinking experiments showed that Lhs1p and Kar2p interact. The interacting domains were the C-terminal extension of Lhs1p and the ATPase domain of Kar2p, and this interaction was independent of ATPase activity of Kar2p. A model is presented where the C-terminal part of Lhs1p forms a Bag-like 3 helices bundle that might serve in the nucleotide exchange function for Kar2p in translocation and folding of secretory proteins in the ER. Exit of secretory proteins in COPII-coated vesicles is believed to be dependent of retrograde transport from the Golgi to the ER in COPI-coated vesicles. It is thought that receptors escaping to the Golgi must be recycled back to the ER exit sites to recruit cargo proteins. We found that Hsp150 leaves the ER even in the absence of functional COPI-traffic from the Golgi to the ER. Thus, an alternative, COPI-independent ER exit pathway must exists, and Hsp150 is recruited to this route. The region containing the signature guiding Hsp150 to this alternative pathway was mapped.
Resumo:
Background: Stabilization strategies adopted by proteins under extreme conditions are very complex and involve various kinds of interactions. Recent studies have shown that a large proportion of proteins have their N- and C-terminal elements in close contact and suggested they play a role in protein folding and stability. However, the biological significance of this contact remains elusive. Methodology: In the present study, we investigate the role of N- and C-terminal residue interaction using a family 10 xylanase (BSX) with a TIM-barrel structure that shows stability under high temperature,alkali pH, and protease and SDS treatment. Based on crystal structure,an aromatic cluster was identified that involves Phe4, Trp6 and Tyr343 holding the Nand C-terminus together; this is a unique and important feature of this protein that might be crucial for folding and stabilityunder poly-extreme conditions. Conclusion: A series of mutants was created to disrupt this aromatic cluster formation and study the loss of stability and function under given conditions. While the deletions of Phe4 resulted in loss of stability, removal of Trp6 and Tyr343 affected in vivo folding and activity. Alanine substitution with Phe4, Trp6 and Tyr343 drastically decreased stability under all parameters studied. Importantly,substitution of Phe4 with Trp increased stability in SDS treatment.Mass spectrometry results of limited proteolysis further demonstrated that the Arg344 residue is highly susceptible to trypsin digestion in sensitive mutants such as DF4, W6A and Y343A, suggesting again that disruption of the Phe4-Trp6-Tyr343 (F-W-Y) cluster destabilizes the N-and C-terminal interaction. Our results underscore the importance of N- and C-terminal contact through aromatic interactions in protein folding and stability under extreme conditions, and these results may be useful to improve the stability of other proteins under suboptimal conditions.
Resumo:
Folding of Ubiquitin (Ub), a functionally important protein found in eukaryotic organisms, is investigated at low and neutral pH at different temperatures using simulations of the coarse-grained self-organized-polymer model with side chains (SOP-SC). The melting temperatures (T-m's), identified with the peaks in the heat capacity curves, decrease as pH decreases, in qualitative agreement with experiments. The calculated radius of gyration, showing dramatic variations with pH, is in excellent agreement with scattering experiments. At T-m Ub folds in a two-state manner at low and neutral pH. Clustering analysis of the conformations sampled in equilibrium folding trajectories at T-m with multiple transitions between the folded and unfolded states, shows a network of metastable states connecting the native and unfolded states. At low and neutral pH, Ub folds with high probability through a preferred set of conformations resulting in a pH-dependent dominant folding pathway. Folding kinetics reveal that Ub assembly at low pH occurs by multiple pathways involving a combination of nucleation-collapse and diffusion collision mechanism. The mechanism by which Ub folds is dictated by the stability of the key secondary structural elements responsible for establishing long-range contacts and collapse of Ub. Nucleation collapse mechanism holds if the stability of these elements are marginal, as would be the case at elevated temperatures. If the lifetimes associated with these structured microdomains are on the order of hundreds of microseconds, then Ub folding follows the diffusion collision mechanism with intermediates, many of which coincide with those found in equilibrium. Folding at neutral pH is a sequential process with a populated intermediate resembling that sampled at equilibrium. The transition state structures, obtained using a P-fold analysis, are homogeneous and globular with most of the secondary and tertiary structures being native-like. Many of our findings for both the thermodynamics and kinetics of folding are not only in agreement with experiments but also provide missing details not resolvable in standard experiments. The key prediction that folding mechanism varies dramatically with pH is amenable to experimental tests.
Resumo:
In our studies, 88 human mRNA samples were collected from the Integrated Sequence-Structure database and then the dynamic process in co-transcriptional mRNA folding was simulated using the RNAstructure version 4.1 program. Through statistical analyses of the frequencies of occurrence of hairpins, a group of special folding structures-the 'common hairpins'-were identified. These 'common hairpins' have lower energies and occur in all the subsequent folding units that formed in the dynamic folding process. By applying the formulas (1)-(4) of the 'common hairpins' statistical model, 163 'common hairpins' were found, to make up about 7% of the total of 2286 hairpins. Classified studies further show that the 'common hairpins' that were studied may oscillate in the dynamic folding process. However, the hairpin loops of the 'common hairpins' and stems proximal to those 'common hairpins' loops maintain topologically stable structures, while other loops and stems distal to the 'common hairpins' loops are shown to be alterable structures. Strikingly, further studies indicate that the stable structures of these 'common hairpins' may have unbeknown effects on controlling the formation of protein structures in the translation process (unpublished results). (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Human cyclin A(2) participates in cell cycle regulation, DNA replication, and transcription. Its overexpression has been implicated in the development and progression of a variety of human cancers. However, cyclin A(2) or its truncated form is very unstable in the absence of binding partner, which makes it difficult to get a deep insight of structural basis of the interactions. Therefore, biophysical studies of the full-length human cyclin A, would provide important information regarding protein stability and folding/unfolding process.
Resumo:
http://www.archive.org/details/memoirofmrsannhj00judsuoft