328 resultados para Thallium
Resumo:
The Eocene and Oligocene epochs (55 to 23 million years ago) comprise a critical phase in Earth history. An array of geological records (Zachos et al., 2001, doi:10.1126/science.1059412; Lear et al., 2000, doi:10.1126/science.287.5451.269; Coxall et al., 2005, doi:10.1038/nature03135; Pekar et al., 2005; doi:10.1130/B25486.1; Strand et al., 2003, doi:10.1016/S0031-0182(03)00396-1) supported by climate modelling (DeConto and Pollard, 2003, doi:10.1038/nature01290) indicates a profound shift in global climate during this interval, from a state that was largely free of polar ice caps to one in which ice sheets on Antarctica approached their modern size. However, the early glaciation history of the Northern Hemisphere is a subject of controversy (Coxall et al., 2005, doi:10.1038/nature03135; Tripati et al., 2005, doi:10.1038/nature03874; Wolf-Welling et al., 1996, doi:10.2973/odp.proc.sr.151.139.1996; Moran et al., 2006, doi:10.1038/nature04800). Here we report stratigraphically extensive ice-rafted debris, including macroscopic dropstones, in late Eocene to early Oligocene sediments from the Norwegian-Greenland Sea that were deposited between about 38 and 30 million years ago. Our data indicate sediment rafting by glacial ice, rather than sea ice, and point to East Greenland as the likely source. Records of this type from one site alone cannot be used to determine the extent of ice involved. However, our data suggest the existence of (at least) isolated glaciers on Greenland about 20 million years earlier than previously documented (Winkler et al., 2002, doi:10.1007/s005310100199), at a time when temperatures and atmospheric carbon dioxide concentrations were substantially higher.
Resumo:
Mineral and chemical compositions of a set of crust samples collected from the North, Central and South Atlantic were examined by means of analytical electron microscopy and ICP-MS, chemical, and microchemical elemental analysis. Vernadite, asbolane, and goethite are dominant mineral phases of the crusts, ferrihydrite is minor, hematite and feroxyhyte are rare. The samples show wide variability in major and trace element contents; however, their characteristic geochemical signatures indicate hydrogenous origin. A comparison between compositions of oceanic hydrogenous and hydrothermal crusts and metalliferous hydrothermal sediments from different ocean areas suggests that the geochemical approach may be insufficient in some cases and fail to identify hydrothermal input in ferromanganese crusts of mixed composition.
Resumo:
Thirty seven deep-sea sediment cores from the Arabian Sea were studied geochemically (49 major and trace elements) for four time slices during the Holocene and the last glacial, and in one high sedimentation rate core (century scale resolution) to detect tracers of past variations in the intensity of the atmospheric monsoon circulation and its hydrographic expression in the ocean surface. This geochemical multi-tracer approach, coupled with additional information on the grain size composition of the clastic fraction, the bulk carbonate and biogenic opal contents makes it possible to characterize the sedimentological regime in detail. Sediments characterized by a specific elemental composition (enrichment) originated from the following sources: river suspensions from the Tapti and Narbada, draining the Indian Deccan traps (Ti, Sr); Indus sediments and dust from Rajasthan and Pakistan (Rb, Cs); dust from Iran and the Persian Gulf (Al, Cr); dust from central Arabia (Mg); dust from East Africa and the Red Sea (Zr/Hf, Ti/Al). Corg, Cd, Zn, Ba, Pb, U, and the HREE are associated with the intensity of upwelling in the western Arabian Sea, but only those patterns that are consistently reproduced by all of these elements can be directly linked with the intensity of the southwest monsoon. Relying on information from a single element can be misleading, as each element is affected by various other processes than upwelling intensity and nutrient content of surface water alone. The application of the geochemical multi-tracer approach indicates that the intensity of the southwest monsoon was low during the LGM, declined to a minimum from 15,000-13,000 14C year BP, intensified slightly at the end of this interval, was almost stable during the Bölling, Alleröd and the Younger Dryas, but then intensified in two abrupt successions at the end of the Younger Dryas (9900 14C year BP) and especially in a second event during the early Holocene (8800 14C year BP). Dust discharge by northwesterly winds from Arabia exhibited a similar evolution, but followed an opposite course: high during the LGM with two primary sources-the central Arabian desert and the dry Persian Gulf region. Dust discharge from both regions reached a pronounced maximum at 15,000-13,000 14C year. At the end of this interval, however, the dust plumes from the Persian Gulf area ceased dramatically, whereas dust discharge from central Arabia decreased only slightly. Dust discharge from East Africa and the Red Sea increased synchronously with the two major events of southwest monsoon intensification as recorded in the nutrient content of surface waters. In addition to the tracers of past dust flux and surface water nutrient content, the geochemical multi-tracer approach provides information on the history of deep sea ventilation (Mo, S), which was much lower during the last glacial maximum than during the Holocene. The multi-tracer approach-i.e. a few sedimentological parameters plus a set of geochemical tracers widely available from various multi-element analysis techniques-is a highly applicable technique for studying the complex sedimentation patterns of an ocean basin, and, specifically in the case of the Arabian Sea, can even reveal the seasonal structure of climate change.
Resumo:
The Atlantis Massif (Mid-Atlantic Ridge, 30°N) is an oceanic core complex marked by distinct variations in crustal architecture, deformation and metamorphism over distances of at least 5 km. We report Sr and Nd isotope data and Rare Earth Element (REE) concentrations of gabbroic and ultramafic rocks drilled at the central dome (IODP Hole 1309D) and recovered by submersible from the southern ridge of the massif that underlie the peridotite-hosted Lost City Hydrothermal Field. Systematic variations between the two areas document variations in seawater penetration and degree of fluid-rock interaction during uplift and emplacement of the massif and hydrothermal activity associated with the formation of Lost City. Homogeneous Sr and Nd isotope compositions of the gabbroic rocks from the two areas (87Sr/86Sr: 0.70261-0.70429 and epsilon-Nd: +9.1 to +12.1) indicate an origin from a depleted mantle. At the central dome, serpentinized peridotites are rare and show elevated seawater-like Sr isotope compositions related to serpentinization at shallow crustal levels, whereas unaltered mantle isotopic compositions preserved in the gabbroic rocks attest to limited seawater interaction at depth. This portion of the massif remained relatively unaffected by Lost City hydrothermal activity. In contrast, pervasive alteration and seawater-like Sr and Nd isotope compositions of serpentinites at the southern wall (87Sr/86Sr: 0.70885-0.70918; epsilon-Nd: -4.7 to +11.3) indicate very high fluid-rock ratios (~20 and up to 10**6) and enhanced fluid fluxes during hydrothermal circulation. Our studies show that Nd isotopes are most sensitive to high fluid fluxes and are thus an important geochemical tracer for quantification of water-rock ratios in hydrothermal systems. Our results suggest that high fluxes and long-lived serpentinization processes may be critical to the formation of Lost City-type systems and that normal faulting and mass wasting in the south facilitate seawater penetration necessary to sustain hydrothermal activity.
Resumo:
The strength of the North Atlantic Meridional Overturning Circulation during climatically highly variable Marine Isotope Stage (MIS) 3 has attracted much attention in recent years. Here we present high-resolution Nd isotope compositions of past seawater derived from authigenic Fe-Mn oxyhydroxides recovered from drift sediments on the Blake Ridge in the deep western North Atlantic (ODP Leg 172, Site 1060, 3481 m water depth). The data cover the period from 45 to 35 ka BP, tracing circulation changes during major Heinrich iceberg discharge event 4 (H4, ~40-39 ka BP). The Nd isotope record suggests that there was no northern-source water (NSW) mass like modern NADW at the deeper part of Blake Ridge at any time between 45 and 35 ka. This is fundamentally different from the hydrographic situation during the Holocene where NADW extends below 4500 m at this location. The epsilon-Nd of past deep water recorded in the Blake Ridge sediments was least radiogenic during Dansgaard/Oeschger (D/O) Interstadial (IS) 8 (epsilon-Nd = -11.3) and most radiogenic immediately preceding IS 9 (epsilon-Nd = -9.8). More radiogenic compositions were also recorded during H4 (-10.2 <= epsilon-Nd <= -9.9). The Nd isotope variability in MIS 3 matches that of a physical bottom current strength reconstruction from the same location. Neither record follows the pattern of Northern Hemisphere D/O climatic cycles. In our record, reduced mixing with northern source waters started in stadial 12 and lasted until after H4 in stadial 9, followed by a rapid increase in NSW contribution thereafter. This major change in the Nd isotope record predates the iceberg discharge event Heinrich 4 by more than 3 ka indicating a shallowing of the water mass boundary between Glacial North Atlantic Intermediate Water and Southern Source Water beneath. This early change in bottom water properties at the deep Blake Ridge suggests that North Atlantic deep water advection may already have decreased several thousand years before the actual iceberg discharge event and associated freshening of the surface waters in the North Atlantic. The change can thus not be attributed to climatic events in the North Atlantic but may be related to changes in flux of deep water from the South.
Resumo:
Bransfield Basin is an actively extending marginal basin separating the inactive South Shetland arc from the northern Antarctic Peninsula. Rift-related volcanism is widespread throughout the central Bransfield Basin, but the wider eastern Bransfield Basin was previously unsampled. Lavas recovered from the eastern subbasin form three distinct groups: (1) Bransfield Group has moderate large-ion lithophile element (LILE) enrichment relative to normal mid-ocean ridge basalt (NMORB), (2) Gibbs Group has strong LILE enrichment and is restricted to a relic seamount interpreted as part of the South Shetland arc, and (3) fresh alkali basalt was recovered from the NE part of the basin near Spanish Rise. The subduction-related component in Bransfield and Gibbs Group lavas is a LILE-rich fluid with radiogenic Sr, Nd, and Pb isotope compositions derived predominantly from subducting sediment. These lavas can be modeled as melts from Pacific MORB source mantle contaminated by up to 5% of the subduction-related component. They further reveal that Pacific mantle, rather than South Atlantic mantle, has underlain Bransfield Basin since 3 Ma. Magma productivity decreases abruptly east of Bridgeman Rise, and lavas with the least subduction component outcrop at that end. Both the eastward decrease in subduction component and occurrence of young alkali basalts require that subduction-modified mantle generated during the lifetime of the South Shetland arc has been progressively removed from NE to SW. This is inconsistent with previous models suggesting continued slow subduction at the South Shetland Trench but instead favors models in which the South Scotia Ridge fault has propagated westward since 3 Ma generating transtension across the basin.