874 resultados para Test method
Resumo:
The effects of complex boundary conditions on flows are represented by a volume force in the immersed boundary methods. The problem with this representation is that the volume force exhibits non-physical oscillations in moving boundary simulations. A smoothing technique for discrete delta functions has been developed in this paper to suppress the non-physical oscillations in the volume forces. We have found that the non-physical oscillations are mainly due to the fact that the derivatives of the regular discrete delta functions do not satisfy certain moment conditions. It has been shown that the smoothed discrete delta functions constructed in this paper have one-order higher derivative than the regular ones. Moreover, not only the smoothed discrete delta functions satisfy the first two discrete moment conditions, but also their derivatives satisfy one-order higher moment condition than the regular ones. The smoothed discrete delta functions are tested by three test cases: a one-dimensional heat equation with a moving singular force, a two-dimensional flow past an oscillating cylinder, and the vortex-induced vibration of a cylinder. The numerical examples in these cases demonstrate that the smoothed discrete delta functions can effectively suppress the non-physical oscillations in the volume forces and improve the accuracy of the immersed boundary method with direct forcing in moving boundary simulations.
Resumo:
The content of free formaldehyde (FA) in minced fish muscle was measured by the following procedure: A mixture of minced fish muscle and water was deproteinized by means of the Carrez reagent. The FA content of the filtrate was determined reflectometrically using the Reflectoquant test strips and the RQflex. The results agreed well with the colorimetrically (Nash test) measured FA content. Der Gehalt an freiem Formaldehyd (FA)in Fischerzeugnissen wurde mit folgender Methode bestimmt: Zerkleinertes Fischfleisch wurde mit Wasser homogenisiert und mit Carrez-Reagenz enteiweißt. Der Formaldehydgehalt des Filtrates wurde reflektometrisch unter Verwendung von Reflectoquant-Teststätbchen und des RQflex ermittelt. Die Ergebnisse stimmten gut mit kolorimetrisch (Nash Test) gemessenen FA-Gehalten überein.
Resumo:
A modified method of the Biochemical oxygen demand (BOD)test was applied in order to find out the seasonal changing activity of the nitrifying bacteria in surface waters. Samples were taken from the River Elbe near Teufelsbrueck.
Resumo:
Determination of the energy range is an important precondition of focus calibration using alignment procedure (FOCAL) test. A new method to determine the energy range of FOCAL off-lined is presented in this paper. Independent of the lithographic tool, the method is time-saving and effective. The influences of some process factors, e.g. resist thickness, post exposure bake (PEB) temperature, PEB time and development time, on the energy range of FOCAL are analyzed.
Resumo:
In this paper, we propose a novel three-dimensional imaging method by which the object is captured by a coded cameras array (CCA) and computationally reconstructed as a series of longitudinal layered surface images of the object. The distribution of cameras in array, named code pattern, is crucial for reconstructed images fidelity when the correlation decoding is used. We use DIRECT global optimization algorithm to design the code patterns that possess proper imaging property. We have conducted primary experiments to verify and test the performance of the proposed method with a simple discontinuous object and a small-scale CCA including nine cameras. After certain procedures such as capturing, photograph integrating, computational reconstructing and filtering, etc., we obtain reconstructed longitudinal layered surface images of the object with higher signal-to-noise ratio. The results of experiments show that the proposed method is feasible. It is a promising method to be used in fields such as remote sensing, machine vision, etc. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
The encircled energy of a focusing lens is one of the parameters directly affecting the target efficiency in high-power laser facilities. The direct measurement method of the encircled energy for the focusing lens based on the scanning Hartmann test is proposed in this paper. With the scanning Hartmann test setup, the information in the whole aperture of the focusing lens can be achieved. The encircled energy can be obtained by analyzing the spot diagram on the focal plane of the focusing lens. In experiments, the encircled energy of an aspheric focusing lens is measured using this method. The measurement result is in good agreement with that derived from measurement data by an interferometer and the difference is 7.7%. (C) 2006 Elsevier GmbH. All rights reserved.
Resumo:
Quality of cardiopulmonary resuscitation (CPR) improves through the use of CPR feedback devices. Most feedback devices integrate the acceleration twice to estimate compression depth. However, they use additional sensors or processing techniques to compensate for large displacement drifts caused by integration. This study introduces an accelerometer-based method that avoids integration by using spectral techniques on short duration acceleration intervals. We used a manikin placed on a hard surface, a sternal triaxial accelerometer, and a photoelectric distance sensor (gold standard). Twenty volunteers provided 60 s of continuous compressions to test various rates (80-140 min(-1)), depths (3-5 cm), and accelerometer misalignment conditions. A total of 320 records with 35312 compressions were analysed. The global root-mean-square errors in rate and depth were below 1.5 min(-1) and 2 mm for analysis intervals between 2 and 5 s. For 3 s analysis intervals the 95% levels of agreement between the method and the gold standard were within -1.64-1.67 min(-1) and -1.69-1.72 mm, respectively. Accurate feedback on chest compression rate and depth is feasible applying spectral techniques to the acceleration. The method avoids additional techniques to compensate for the integration displacement drift, improving accuracy, and simplifying current accelerometer-based devices.
Resumo:
nterruptions in cardiopulmonary resuscitation (CPR) compromise defibrillation success. However, CPR must be interrupted to analyze the rhythm because although current methods for rhythm analysis during CPR have high sensitivity for shockable rhythms, the specificity for nonshockable rhythms is still too low. This paper introduces a new approach to rhythm analysis during CPR that combines two strategies: a state-of-the-art CPR artifact suppression filter and a shock advice algorithm (SAA) designed to optimally classify the filtered signal. Emphasis is on designing an algorithm with high specificity. The SAA includes a detector for low electrical activity rhythms to increase the specificity, and a shock/no-shock decision algorithm based on a support vector machine classifier using slope and frequency features. For this study, 1185 shockable and 6482 nonshockable 9-s segments corrupted by CPR artifacts were obtained from 247 patients suffering out-of-hospital cardiac arrest. The segments were split into a training and a test set. For the test set, the sensitivity and specificity for rhythm analysis during CPR were 91.0% and 96.6%, respectively. This new approach shows an important increase in specificity without compromising the sensitivity when compared to previous studies.
Resumo:
In the 'free-ball' version of the micro-scale abrasion or ball-cratering test the rotating ball rests against a tilted sample and a grooved drive shaft. Tests under nominally identical conditions with different apparatus commonly show small but significant differences in measured wear rate. An indirect method has been developed and demonstrated for continuous on-line measurement of the coefficient of friction in the free-ball test. Experimental investigation of the effects of sample tilt angle and drive shaft groove width shows that both these factors influence the stability of the rotation of the ball, and the shape of the abrasive slurry pool, which in turn affect the coefficient of friction in the wear scar area and the measured wear rate. It is suggested that in order to improve the reproducibility of this method the geometry of the apparatus should be specified. For the apparatus used in this work with a steel ball of 25 mm diameter, a sample tilt angle of 60-75° and a shaft groove width of about 10mm provided the most stable ball motion and a wear rate which showed least variability. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Changes in the texture (elastic nature) of the flesh of barrel salted herring during the ripening process at 4°C have been monitored. The method employs the analysis of stress-relaxation curves after compression to half of the sample thickness on an lnstron Model 1112. The parameter 'T/P' for each sample represents the reciprocal of the gradient of a line connecting P and T0.368p. This parameter characteristic of each sample's texture was calculated as the ratio of 'T/P' where, T is the relaxation time and is defined as the time required for a stress at constant strain to decrease to 1/e of its original value, where 'e' is the base of natural logarithms (2.7183). Since 1/e=0.368, the relaxation time is the time required for the force to decay to 36.8% of its original value. P is the peak height of the curve (i.e. the force value at the maximum height). This method was adopted from the bakery industry for testing the degree of gluten development in bread dough. The 'T/P' values obtained over the course of ripening for differently treated salted-herring in barrels ranged between 1 and 12. The trends in 'T/P' value, during ripening period for the different samples, appeared to be parallel changes in texture perceived by sensory observation (subjective measurement), although the heterogeneous nature of the samples gave standard deviations, about the replicate sample mean, around 5%. The method appears promising as an objective measure for monitoring this aspect of the textural quality of barrel salted-herring through ripening if reproducibility of test results can be improved by more careful standardization of sample preparation and test protocol.
Resumo:
Two shock-capturing methods are considered. One is based on a standard conservative Roe scheme with van Leer's MUSCL variable extrapolation method applied to characteristic variables and a Runge-Kutta time stepping scheme. The other is based on the novel CABARET space-time scheme, which uses two sets of staggered variables, one for the conservation step and the other for characteristic splitting into local Riemann invariants. The methods are compared in a range of 2-D inviscid compressible flow test cases. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
It is observed that the freezing and thawing of fish leads to increase in the total activity of aspartate aminotransferase (AAT) in tissue fluid due to the release of the bound form of mitochondrial enzyme. Electrophoresis of the tissue fluid of fresh unfrozen fish shows only a single fast-moving band of AAT in the anodic region whereas frozen and thawed fish shows an additional slow-moving band corresponding to mitochondrial AAT in the cathodic region. The method can be adopted to distinguish fresh fish from frozen and thawed fish.
Resumo:
The widespread use of piled foundations in areas prone to liquefaction has led to significant research being carried out to understand their behaviour during earthquakes. A key challenge inmodelling this problemin a centrifuge is the installation procedure, and in most dynamic centrifuge experiments piles are installed before the test commences, either pushing the piles at 1g, or fixing the piles in the model and the sand poured around them. In this paper, a series of dynamic centrifuge experiments are described in which a 2 × 2 pile group is pushed into the model before the test begins and also once the centrifuge has reached the test acceleration. The paper focuses on the key differences which were observed in the pile group's response to the earthquake motion, and in particular, the very different settlement responses of the pile groups.
Resumo:
Emissions, fuel burn, and noise are the main drivers for innovative aircraft design. Embedded propulsion systems, such as for example used in hybrid-wing body aircraft, can offer fuel burn and noise reduction benefits but the impact of inlet flow distortion on the generation and propagation of turbomachinery noise has yet to be assessed. A novel approach is used to quantify the effects of non-uniform flow on the creation and propagation of multiple pure tone (MPT) noise. The ultimate goal is to conduct a parametric study of S-duct inlets to quantify the effects of inlet design parameters on the acoustic signature. The key challenge is that the effects of distortion transfer, noise source generation and propagation through the non-uniform flow field are inherently coupled such that a simultaneous computation of the aerodynamics and acoustics is required to capture the mechanisms at play. The technical approach is based on a body force description of the fan blade row that is able to capture the distortion transfer and the blade-to-blade flow variations that cause the MPT noise while reducing computational cost. A single, 3-D full-wheel CFD simulation, in which the Euler equations are solved to second-order spatial and temporal accuracy, simultaneously computes the MPT noise generation and its propagation in distorted inlet flow. A new method of producing the blade-to-blade variations in the body force field for MPT noise generation has been developed and validated. The numerical dissipation inherent to the solver is quantified and used to correct for non-physical attenuation in the far-field noise spectra. Source generation, acoustic propagation and acoustic energy transfer between modes is examined in detail. The new method is validated on NASA's Source Diagnostic Test fan and inlet, showing good agreement with experimental data for aerodynamic performance, acoustic source generation, and far-field noise spectra. The next steps involve the assessment of MPT noise in serpentine inlet ducts and the development of a reduced order formulation suitable for incorporation into NASA's ANOPP framework. © 2010 by Jeff Defoe, Alex Narkaj & Zoltan Spakovszky.
Resumo:
In this paper we develop a new approach to sparse principal component analysis (sparse PCA). We propose two single-unit and two block optimization formulations of the sparse PCA problem, aimed at extracting a single sparse dominant principal component of a data matrix, or more components at once, respectively. While the initial formulations involve nonconvex functions, and are therefore computationally intractable, we rewrite them into the form of an optimization program involving maximization of a convex function on a compact set. The dimension of the search space is decreased enormously if the data matrix has many more columns (variables) than rows. We then propose and analyze a simple gradient method suited for the task. It appears that our algorithm has best convergence properties in the case when either the objective function or the feasible set are strongly convex, which is the case with our single-unit formulations and can be enforced in the block case. Finally, we demonstrate numerically on a set of random and gene expression test problems that our approach outperforms existing algorithms both in quality of the obtained solution and in computational speed. © 2010 Michel Journée, Yurii Nesterov, Peter Richtárik and Rodolphe Sepulchre.