809 resultados para Television Broadcasts in Science
Resumo:
In Australia we are at a crossroad in science education. We have come from a long history of adopting international curricula, through to blending international and Australian developed materials, to the present which is a thoroughly unique Australian curriculum in science. This paper documents Australia’s journey over the past 200 years, as we prepare for the unveiling of our first truly Australian National Curriculum. One of the unique aspects of this curriculum is the emphasis on practical work and inquiry-based learning. This paper identifies seven forms of practical work currently used in Australian schools and the purposes aligned with each form by 138 pre-service and experienced in-service teachers. The paper explores the question “What does the impending national curriculum, with its emphasis on practical inquiry mean to the teachers now, are they ready?” The study suggests that practical work in Australian schools is multifaceted, and the teacher aligned purposes are dependent not only upon the age of the student, but also on the type of practical work being undertaken. It was found that most teachers are not ready to teach using inquiry-based pedagogy and cite lack of content knowledge, behaviour management, and lack of physical resources and availability of classroom space as key issues which will hinder their implementation of the inquiry component of Australia’s pending curriculum in science.
Resumo:
In this paper, we report on how peer scaffolding was used to effect change in tertiary teaching practice and academic disposition in the use of Information and Communication Technology (ICT) in Science teaching and learning. We present a small-scale case study investigating the practice of one of this paper’s authors. It is told through two salient episodes which narratively describe the scaffolding used to support a teaching experiment. This was made possible through the national Teaching Teachers for the Future Project (2011-2012) which aimed to enhance the technological pedagogical capability of pre-service teachers across Australia. The outcome was a demonstrable shift in the academic’s disposition towards the use and benefits of ICT in teaching science and an increase in skills and confidence for both the academic and his students. This study and its outcomes fit within the contemporary push to “re-imagine” the teaching of Science, and more broadly of STEM, in schools.
Resumo:
In this paper, we report on how peer scaffolding was used to effect change in tertiary teaching practice and academic disposition in the use of Information and Communication Technology (ICT) in Science teaching and learning. We present a small-scale case study investigating the practice of one of this paper’s authors. It is told through two salient episodes which narratively describe the scaffolding used to support a teaching experiment. This was made possible through the national Teaching Teachers for the Future Project (2011-2012) which aimed to enhance the technological pedagogical capability of pre-service teachers across Australia. The outcome was a demonstrable shift in the academic’s disposition towards the use and benefits of ICT in teaching science and an increase in skills and confidence for both the academic and his students. This study and its outcomes fit within the contemporary push to “re-imagine” the teaching of Science, and more broadly of STEM, in schools.
Resumo:
The determination of performance standards and assessment practices in regard to student work placements is an essential and important task. Inappropriate, inadequate, or excessively complex assessment tasks can influence levels of student engagement and the quality of learning outcomes. Critical to determining appropriate standards and assessment tasks is an understanding and knowledge of key elements of the learning environment and the extent to which opportunities are provided for students to engage in critical reflection and judgement of their own performance in the contexts of the work environment. This paper focuses on the development of essential skills and knowledge (capabilities) that provide evidence of learning in work placements by describing an approach taken in the science and technology disciplines. Assessment matrices are presented to illustrate a method of assessment for use within the context of the learning environment centred on work placements in science and technology. This study contributes to the debate on the meaning of professional capability, performance standards and assessment practices in work placement programs by providing evidence of an approach that can be adapted by other programs to achieve similar benefits. The approach may also be valuable to other learning contexts where capability and performance are being judged in situations that are outside a controlled teaching and learning environment i.e. in other life-wide learning contexts.
'Going live' : establishing the creative attributes of the live multi-camera television professional
Resumo:
In my capacity as a television professional and teacher specialising in multi-camera live television production for over 40 years, I was drawn to the conclusion that opaque or inadequately formed understandings of how creativity applies to the field of live television, have impeded the development of pedagogies suitable to the teaching of live television in universities. In the pursuit of this hypothesis, the thesis shows that television degrees were born out of film studies degrees, where intellectual creativity was aligned to single camera production, and the 'creative roles' of producers, directors and scriptwriters. At the same time, multi-camera live television production was subsumed under the 'mass communication' banner, leading to an understanding that roles other than producer and director are simply technical, and bereft of creative intent or acumen. The thesis goes on to show that this attitude to other television production personnel, for example, the vision mixer, videotape operator and camera operator, relegates their roles to that of 'button pusher'. This has resulted in university teaching models with inappropriate resources and unsuitable teaching practices. As a result, the industry is struggling to find people with the skills to fill the demands of the multi-camera live television sector. In specific terms the central hypothesis is pursued through the following sequenced approach. Firstly, the thesis sets out to outline the problems, and traces the origins of the misconceptions that hold with the notion that intellectual creativity does not exist in live multi-camera television. Secondly, this more adequately conceptualised rendition, of the origins particular to the misconceptions of live television and creativity, is then anchored to the field of examination by presentation of the foundations of the roles involved in making live television programs, using multicamera production techniques. Thirdly, this more nuanced rendition of the field sets the stage for a thorough analysis of education and training in the industry, and teaching models at Australian universities. The findings clearly establish that the pedagogical models are aimed at single camera production, a position that deemphasises the creative aspects of multi-camera live television production. Informed by an examination of theories of learning, qualitative interviews, professional reflective practice and observations, the roles of four multi-camera live production crewmembers (camera operator, vision mixer, EVS/videotape operator and director's assistant), demonstrate the existence of intellectual creativity during live production. Finally, supported by the theories of learning, and the development and explication of a successful teaching model, a new approach to teaching students how to work in live television is proposed and substantiated.
Resumo:
Long term exposure to vehicle emissions has been associated with harmful health effects. Children are amongst the most susceptible group and schools represent an environment where they can experience significant exposure to vehicle emissions. However, there are limited studies on children’s exposure to vehicle emissions in schools. The aim of this study was to quantify the concentration of organic aerosol and in particular, vehicle emissions that children are exposed to during school hours. Therefore an Aerodyne compact time-of-flight aerosol mass spectrometer (TOF-AMS) was deployed at five urban schools in Brisbane, Australia. The TOF-AMS enabled the chemical composition of the non- refractory (NR-PM1) to be analysed with a high temporal resolution to assess the concentration of vehicle emissions and other organic aerosols during school hours. At each school the organic fraction comprised the majority of NR-PM1 with secondary organic aerosols as the main constitute. At two of the schools, a significant source of the organic aerosol (OA) was slightly aged vehicle emissions from nearby highways. More aged and oxidised OA was observed at the other three schools, which also recorded strong biomass burning influences. Primary emissions were found to dominate the OA at only one school which had an O:C ratio of 0.17, due to fuel powered gardening equipment used near the TOF-AMS. The diurnal cycle of OA concentration varied between schools and was found to be at a minimum during school hours. The major organic component that school children were exposed to during school hours was secondary OA. Peak exposure of school children to HOA occurred during school drop off and pick up times. Unless a school is located near major roads, children are exposed predominately to regional secondary OA as opposed to local emissions during schools hours in urban environments.
Resumo:
Abstract: Texture enhancement is an important component of image processing, with extensive application in science and engineering. The quality of medical images, quantified using the texture of the images, plays a significant role in the routine diagnosis performed by medical practitioners. Previously, image texture enhancement was performed using classical integral order differential mask operators. Recently, first order fractional differential operators were implemented to enhance images. Experiments conclude that the use of the fractional differential not only maintains the low frequency contour features in the smooth areas of the image, but also nonlinearly enhances edges and textures corresponding to high-frequency image components. However, whilst these methods perform well in particular cases, they are not routinely useful across all applications. To this end, we applied the second order Riesz fractional differential operator to improve upon existing approaches of texture enhancement. Compared with the classical integral order differential mask operators and other fractional differential operators, our new algorithms provide higher signal to noise values, which leads to superior image quality.
Resumo:
Deterministic computer simulations of physical experiments are now common techniques in science and engineering. Often, physical experiments are too time consuming, expensive or impossible to conduct. Complex computer models or codes, rather than physical experiments lead to the study of computer experiments, which are used to investigate many scientific phenomena of this nature. A computer experiment consists of a number of runs of the computer code with different input choices. The Design and Analysis of Computer Experiments is a rapidly growing technique in statistical experimental design. This thesis investigates some practical issues in the design and analysis of computer experiments and attempts to answer some of the questions faced by experimenters using computer experiments. In particular, the question of the number of computer experiments and how they should be augmented is studied and attention is given to when the response is a function over time.
Resumo:
Targeting females at high school or earlier may be a key towards engaging them in science, technology, engineering and mathematics (STEM) education. This ethnographic study, part of a three-year longitudinal research project, investigated Year 8 female students’ learning about engineering concepts associated with designing, constructing, testing, and evaluating a catapult. There was a series of lead-up lessons and four lessons for the catapult challenge (total of 18 x 45-minute lessons) over a nine-week period. Data from two girls within a focus group showed that they needed to: (1) receive clarification on engineering terms to facilitate more fluent discourse, (2) question and debate conceptual understandings without peers being judgemental, and (3) have multiple opportunities for engaging with materials towards designing, constructing and explaining key concepts learnt. There are implications for teachers facilitating STEM education, such as: clarifying STEM terms, articulating how students can interact in non-judgmental ways, and providing multiple opportunities for interacting within engineering education.
Resumo:
This study is about young adolescents' engagement in learning science. The middle years of schooling are critical in the development of students' interest and engagement with learning. Successful school experiences enhance dispositions towards a career related to those experiences. Poor experiences lead to negative attitudes and rejection of certain career pathways. At a time when students are becoming more aware, more independent and focused on peer relationships and social status, the high school environment in some circumstances offers more a content-centred curriculum that is less personally relevant to their lives than the social melee surrounding them. Science education can further exacerbate the situation by presenting abstract concepts that have limited contextual relevance and a seemingly difficult vocabulary that further alienates adolescents from the curriculum. In an attempt to reverse a perceived growing disinterest by students to science (Goodrum, Druhan & Abbs, 2011), a study was initiated based on a student-centred unit designed to enhance and sustain adolescent engagement in science. The premise of the study was that adolescent students are more responsive toward learning if they are given an appropriate learning environment that helps connect their learning with life beyond the school. The purpose of this study was to examine the experiences of young adolescents with the aim of transforming school learning in science into meaningful experiences that connected with their lives. Two areas were specifically canvassed and subsumed within the study to strengthen the design base. One area that of the middle schooling ideology, offered specific pedagogical approaches and a philosophical framework that could provide opportunities for reform. The other area, the construct of scientific literacy (OECD, 2007) as defined by Holbrook and Rannikmae, (2009) appeared to provide a sense of purpose for students to aim toward and value for becoming active citizens. The study reported here is a self-reflection of a teacher/researcher exploring practice and challenging existing approaches to the teaching of science in the middle years of schooling. The case study approach (Yin, 2003) was adopted to guide the design of the study. Over a 6-month period, the researcher, an experienced secondary-science teacher, designed, implemented and documented a range of student-centred pedagogical practices with a Year-7 secondary science class. Data for this case study included video recordings, journals, interviews and surveys of students. Both quantitative and qualitative data sources were employed in a partially mixed methods research approach (Leech & Onwuegbuzie, 2009) dominated by qualitative data with the concurrent collection of quantitative data to corroborate interpretations as a means of analysing and developing a model of the dynamic learning environment. The findings from the case study identified five propositions that became the basis for a model of a student-centred learning environment that was able to sustain student participation and thus engagement in science. The study suggested that adolescent student engagement can be promoted and sustained by providing a classroom climate that encourages and strengthens social interaction. Engagement in science can be enhanced by presenting developmentally appropriate challenges that require rigorous exploration of contextually relevant learning environments; supporting students to develop connections with a curriculum that aligns with their own experiences. By setting an environment empathetic to adolescent needs and understandings, students were able to actively explore phenomena collaboratively through developmentally appropriate experiences. A significant outcome of this study was the transformative experiences of an insider, the teacher as researcher, whose reflections provide an authentic model for reforming pedagogy. The model and theory presented became an adjunct to my repertoire for science teaching in the middle years of schooling. The study was rewarding in that it helped address a void in my understanding of middle years of schooling by prompting me to re-think the notion of adolescence in the context of the science classroom. This study is timely given the report "The Status and Quality of Year 11 and 12 Science in Australian Schools" (Goodrum, Druhan & Abbs, 2011) and national curricular changes that are being proposed for science (ACARA, 2009).
Resumo:
Many primary teachers and preservice teachers experience a fear of science that translates into a fear of teaching science. Consequently, primary students may not receive a full science education curriculum, particularly as the teaching of science is avoided by many primary teachers, as shown in an Australian report by Goodrum, Hackling and Rennie ( 2001 ). Preservice teachers need to develop confi dence to teach primary science, by understanding what science is, knowing how to plan and assess science learning, and teaching science skills and knowledge in ways that engage students in science education.
Resumo:
A 3-year longitudinal study Transforming Children’s Mathematical and Scientific Development integrates, through data modelling, a pedagogical approach focused on mathematical patterns and structural relationships with learning in science. As part of this study, a purposive sample of 21 highly able Grade 1 students was engaged in an innovative data modelling program. In the majority of students, representational development was observed. Their complex graphs depicting categorical and continuous data revealed a high level of structure and enabled identification of structural features critical to this development.
Resumo:
The establishment and continuity of two international comparative assessments of science learning—the IEA’s TIMSS project and the OECD’s PISA project—have meant that there are now high-status reference points for other national and more local approaches to assessing the efficacy of science teaching and learning. Both projects, albeit with very different senses of what the outcome of science learning should be, have contributed positively and negatively to the current state of assessment of school science. The TIMSS project looks back at the science that is commonly included in the curricula of the participating countries. It is thus not about established school science nor about innovations in it. PISA is highly innovative looking, prospectively forward to see how students can use their science learning in everyday life situations. In this chapter some of these positives and negatives are discussed.
Resumo:
The intentions of the science curriculum are very often constrained by the forms of student learning that are required by, or are currently available within, the system of education. Furthermore, little attention is given to developing new approaches to assessment that would encourage these good intentions. In this chapter, we argue that achieving this broadening of the intentions of science education will require a diversity of assessment techniques and that only a profile of each student’s achievement will capture the range of intended learnings. We explore a variety of assessment modes that match some of these new aspects of science learning and that also provide students with both formative information and a more comprehensive and authentic summative profile of their performances. Our discussion is illustrated with research-based examples of assessment practice in relation to three aspects of science education that are increasingly referred to in curriculum statements as desirable human dimensions of science: context-based science education, decision-making processes and socioscientific issues and integrated science education. We conclude with some notes on what these broader kinds of assessment mean for teachers and the support they would need to include them in their day-to-day practices in the science classrooms if, and when, the mainstream of science teaching and learning takes these curricular intentions seriously.
Resumo:
In this age of rapidly evolving technology, teachers are encouraged to adopt ICTs by government, syllabus, school management, and parents. Indeed, it is an expectation that teachers will incorporate technologies into their classroom teaching practices to enhance the learning experiences and outcomes of their students. In particular, regarding the science classroom, a subject that traditionally incorporates hands-on experiments and practicals, the integration of modern technologies should be a major feature. Although myriad studies report on technologies that enhance students’ learning outcomes in science, there is a dearth of literature on how teachers go about selecting technologies for use in the science classroom. Teachers can feel ill prepared to assess the range of available choices and might feel pressured and somewhat overwhelmed by the avalanche of new developments thrust before them in marketing literature and teaching journals. The consequences of making bad decisions are costly in terms of money, time and teacher confidence. Additionally, no research to date has identified what technologies science teachers use on a regular basis, and whether some purchased technologies have proven to be too problematic, preventing their sustained use and possible wider adoption. The primary aim of this study was to provide research-based guidance to teachers to aid their decision-making in choosing technologies for the science classroom. The study unfolded in several phases. The first phase of the project involved survey and interview data from teachers in relation to the technologies they currently use in their science classrooms and the frequency of their use. These data were coded and analysed using Grounded Theory of Corbin and Strauss, and resulted in the development of a PETTaL model that captured the salient factors of the data. This model incorporated usability theory from the Human Computer Interaction literature, and education theory and models such as Mishra and Koehler’s (2006) TPACK model, where the grounded data indicated these issues. The PETTaL model identifies Power (school management, syllabus etc.), Environment (classroom / learning setting), Teacher (personal characteristics, experience, epistemology), Technology (usability, versatility etc.,) and Learners (academic ability, diversity, behaviour etc.,) as fields that can impact the use of technology in science classrooms. The PETTaL model was used to create a Predictive Evaluation Tool (PET): a tool designed to assist teachers in choosing technologies, particularly for science teaching and learning. The evolution of the PET was cyclical (employing agile development methodology), involving repeated testing with in-service and pre-service teachers at each iteration, and incorporating their comments i ii in subsequent versions. Once no new suggestions were forthcoming, the PET was tested with eight in-service teachers, and the results showed that the PET outcomes obtained by (experienced) teachers concurred with their instinctive evaluations. They felt the PET would be a valuable tool when considering new technology, and it would be particularly useful as a means of communicating perceived value between colleagues and between budget holders and requestors during the acquisition process. It is hoped that the PET could make the tacit knowledge acquired by experienced teachers about technology use in classrooms explicit to novice teachers. Additionally, the PET could be used as a research tool to discover a teachers’ professional development needs. Therefore, the outcomes of this study can aid a teacher in the process of selecting educationally productive and sustainable new technology for their science classrooms. This study has produced an instrument for assisting teachers in the decision-making process associated with the use of new technologies for the science classroom. The instrument is generic in that it can be applied to all subject areas. Further, this study has produced a powerful model that extends the TPACK model, which is currently extensively employed to assess teachers’ use of technology in the classroom. The PETTaL model grounded in data from this study, responds to the calls in the literature for TPACK’s further development. As a theoretical model, PETTaL has the potential to serve as a framework for the development of a teacher’s reflective practice (either self evaluation or critical evaluation of observed teaching practices). Additionally, PETTaL has the potential for aiding the formulation of a teacher’s personal professional development plan. It will be the basis for further studies in this field.