959 resultados para Techniques: Image Processing
Resumo:
The Saimaa ringed seal is one of the most endangered seals in the world. It is a symbol of Lake Saimaa and a lot of effort have been applied to save it. Traditional methods of seal monitoring include capturing the animals and installing sensors on their bodies. These invasive methods for identifying can be painful and affect the behavior of the animals. Automatic identification of seals using computer vision provides a more humane method for the monitoring. This Master's thesis focuses on automatic image-based identification of the Saimaa ringed seals. This consists of detection and segmentation of a seal in an image, analysis of its ring patterns, and identification of the detected seal based on the features of the ring patterns. The proposed algorithm is evaluated with a dataset of 131 individual seals. Based on the experiments with 363 images, 81\% of the images were successfully segmented automatically. Furthermore, a new approach for interactive identification of Saimaa ringed seals is proposed. The results of this research are a starting point for future research in the topic of seal photo-identification.
Resumo:
This thesis focuses on developing an evolutionary art system using genetic programming. The main goal is to produce new forms of evolutionary art that filter existing images into new non-photorealistic (NPR) styles, by obtaining images that look like traditional media such as watercolor or pencil, as well as brand new effects. The approach permits GP to generate creative forms of NPR results. The GP language is extended with different techniques and methods inspired from NPR research such as colour mixing expressions, image processing filters and painting algorithm. Colour mixing is a major new contribution, as it enables many familiar and innovative NPR effects to arise. Another major innovation is that many GP functions process the canvas (rendered image), while is dynamically changing. Automatic fitness scoring uses aesthetic evaluation models and statistical analysis, and multi-objective fitness evaluation is used. Results showed a variety of NPR effects, as well as new, creative possibilities.
Resumo:
RÉSUMÉ - Les images satellitales multispectrales, notamment celles à haute résolution spatiale (plus fine que 30 m au sol), représentent une source d’information inestimable pour la prise de décision dans divers domaines liés à la gestion des ressources naturelles, à la préservation de l’environnement ou à l’aménagement et la gestion des centres urbains. Les échelles d’étude peuvent aller du local (résolutions plus fines que 5 m) à des échelles régionales (résolutions plus grossières que 5 m). Ces images caractérisent la variation de la réflectance des objets dans le spectre qui est l’information clé pour un grand nombre d’applications de ces données. Or, les mesures des capteurs satellitaux sont aussi affectées par des facteurs « parasites » liés aux conditions d’éclairement et d’observation, à l’atmosphère, à la topographie et aux propriétés des capteurs. Deux questions nous ont préoccupé dans cette recherche. Quelle est la meilleure approche pour restituer les réflectances au sol à partir des valeurs numériques enregistrées par les capteurs tenant compte des ces facteurs parasites ? Cette restitution est-elle la condition sine qua non pour extraire une information fiable des images en fonction des problématiques propres aux différents domaines d’application des images (cartographie du territoire, monitoring de l’environnement, suivi des changements du paysage, inventaires des ressources, etc.) ? Les recherches effectuées les 30 dernières années ont abouti à une série de techniques de correction des données des effets des facteurs parasites dont certaines permettent de restituer les réflectances au sol. Plusieurs questions sont cependant encore en suspens et d’autres nécessitent des approfondissements afin, d’une part d’améliorer la précision des résultats et d’autre part, de rendre ces techniques plus versatiles en les adaptant à un plus large éventail de conditions d’acquisition des données. Nous pouvons en mentionner quelques unes : - Comment prendre en compte des caractéristiques atmosphériques (notamment des particules d’aérosol) adaptées à des conditions locales et régionales et ne pas se fier à des modèles par défaut qui indiquent des tendances spatiotemporelles à long terme mais s’ajustent mal à des observations instantanées et restreintes spatialement ? - Comment tenir compte des effets de « contamination » du signal provenant de l’objet visé par le capteur par les signaux provenant des objets environnant (effet d’adjacence) ? ce phénomène devient très important pour des images de résolution plus fine que 5 m; - Quels sont les effets des angles de visée des capteurs hors nadir qui sont de plus en plus présents puisqu’ils offrent une meilleure résolution temporelle et la possibilité d’obtenir des couples d’images stéréoscopiques ? - Comment augmenter l’efficacité des techniques de traitement et d’analyse automatique des images multispectrales à des terrains accidentés et montagneux tenant compte des effets multiples du relief topographique sur le signal capté à distance ? D’autre part, malgré les nombreuses démonstrations par des chercheurs que l’information extraite des images satellitales peut être altérée à cause des tous ces facteurs parasites, force est de constater aujourd’hui que les corrections radiométriques demeurent peu utilisées sur une base routinière tel qu’est le cas pour les corrections géométriques. Pour ces dernières, les logiciels commerciaux de télédétection possèdent des algorithmes versatiles, puissants et à la portée des utilisateurs. Les algorithmes des corrections radiométriques, lorsqu’ils sont proposés, demeurent des boîtes noires peu flexibles nécessitant la plupart de temps des utilisateurs experts en la matière. Les objectifs que nous nous sommes fixés dans cette recherche sont les suivants : 1) Développer un logiciel de restitution des réflectances au sol tenant compte des questions posées ci-haut. Ce logiciel devait être suffisamment modulaire pour pouvoir le bonifier, l’améliorer et l’adapter à diverses problématiques d’application d’images satellitales; et 2) Appliquer ce logiciel dans différents contextes (urbain, agricole, forestier) et analyser les résultats obtenus afin d’évaluer le gain en précision de l’information extraite par des images satellitales transformées en images des réflectances au sol et par conséquent la nécessité d’opérer ainsi peu importe la problématique de l’application. Ainsi, à travers cette recherche, nous avons réalisé un outil de restitution de la réflectance au sol (la nouvelle version du logiciel REFLECT). Ce logiciel est basé sur la formulation (et les routines) du code 6S (Seconde Simulation du Signal Satellitaire dans le Spectre Solaire) et sur la méthode des cibles obscures pour l’estimation de l’épaisseur optique des aérosols (aerosol optical depth, AOD), qui est le facteur le plus difficile à corriger. Des améliorations substantielles ont été apportées aux modèles existants. Ces améliorations concernent essentiellement les propriétés des aérosols (intégration d’un modèle plus récent, amélioration de la recherche des cibles obscures pour l’estimation de l’AOD), la prise en compte de l’effet d’adjacence à l’aide d’un modèle de réflexion spéculaire, la prise en compte de la majorité des capteurs multispectraux à haute résolution (Landsat TM et ETM+, tous les HR de SPOT 1 à 5, EO-1 ALI et ASTER) et à très haute résolution (QuickBird et Ikonos) utilisés actuellement et la correction des effets topographiques l’aide d’un modèle qui sépare les composantes directe et diffuse du rayonnement solaire et qui s’adapte également à la canopée forestière. Les travaux de validation ont montré que la restitution de la réflectance au sol par REFLECT se fait avec une précision de l’ordre de ±0.01 unités de réflectance (pour les bandes spectrales du visible, PIR et MIR), même dans le cas d’une surface à topographie variable. Ce logiciel a permis de montrer, à travers des simulations de réflectances apparentes à quel point les facteurs parasites influant les valeurs numériques des images pouvaient modifier le signal utile qui est la réflectance au sol (erreurs de 10 à plus de 50%). REFLECT a également été utilisé pour voir l’importance de l’utilisation des réflectances au sol plutôt que les valeurs numériques brutes pour diverses applications courantes de la télédétection dans les domaines des classifications, du suivi des changements, de l’agriculture et de la foresterie. Dans la majorité des applications (suivi des changements par images multi-dates, utilisation d’indices de végétation, estimation de paramètres biophysiques, …), la correction des images est une opération cruciale pour obtenir des résultats fiables. D’un point de vue informatique, le logiciel REFLECT se présente comme une série de menus simples d’utilisation correspondant aux différentes étapes de saisie des intrants de la scène, calcul des transmittances gazeuses, estimation de l’AOD par la méthode des cibles obscures et enfin, l’application des corrections radiométriques à l’image, notamment par l’option rapide qui permet de traiter une image de 5000 par 5000 pixels en 15 minutes environ. Cette recherche ouvre une série de pistes pour d’autres améliorations des modèles et méthodes liés au domaine des corrections radiométriques, notamment en ce qui concerne l’intégration de la FDRB (fonction de distribution de la réflectance bidirectionnelle) dans la formulation, la prise en compte des nuages translucides à l’aide de la modélisation de la diffusion non sélective et l’automatisation de la méthode des pentes équivalentes proposée pour les corrections topographiques.
Resumo:
Cette thèse porte sur l’amélioration des techniques d’imagerie à haut-contraste permettant la détection directe de compagnons à de faibles séparations de leur étoile hôte. Plus précisément, elle s’inscrit dans le développement du Gemini Planet Imager (GPI) qui est un instrument de deuxième génération pour les télescopes Gemini. Cette caméra utilisera un spectromètre à champ intégral (SCI) pour caractériser les compagnons détectés et pour réduire le bruit de tavelure limitant leur détection et corrigera la turbulence atmosphérique à un niveau encore jamais atteint en utilisant deux miroirs déformables dans son système d’optique adaptative (OA) : le woofer et le tweeter. Le woofer corrigera les aberrations de basses fréquences spatiales et de grandes amplitudes alors que le tweeter compensera les aberrations de plus hautes fréquences ayant une plus faible amplitude. Dans un premier temps, les performances pouvant être atteintes à l’aide des SCIs présentement en fonction sur les télescopes de 8-10 m sont investiguées en observant le compagnon de l’étoile GQ Lup à l’aide du SCI NIFS et du système OA ALTAIR installés sur le télescope Gemini Nord. La technique de l’imagerie différentielle angulaire (IDA) est utilisée pour atténuer le bruit de tavelure d’un facteur 2 à 6. Les spectres obtenus en bandes JHK ont été utilisés pour contraindre la masse du compagnon par comparaison avec les prédictions des modèles atmosphériques et évolutifs à 8−60 MJup, où MJup représente la masse de Jupiter. Ainsi, il est déterminé qu’il s’agit plus probablement d’une naine brune que d’une planète. Comme les SCIs présentement en fonction sont des caméras polyvalentes pouvant être utilisées pour plusieurs domaines de l’astrophysique, leur conception n’a pas été optimisée pour l’imagerie à haut-contraste. Ainsi, la deuxième étape de cette thèse a consisté à concevoir et tester en laboratoire un prototype de SCI optimisé pour cette tâche. Quatre algorithmes de suppression du bruit de tavelure ont été testés sur les données obtenues : la simple différence, la double différence, la déconvolution spectrale ainsi qu’un nouvel algorithme développé au sein de cette thèse baptisé l’algorithme des spectres jumeaux. Nous trouvons que l’algorithme des spectres jumeaux est le plus performant pour les deux types de compagnons testés : les compagnons méthaniques et non-méthaniques. Le rapport signal-sur-bruit de la détection a été amélioré d’un facteur allant jusqu’à 14 pour un compagnon méthanique et d’un facteur 2 pour un compagnon non-méthanique. Dernièrement, nous nous intéressons à certains problèmes liés à la séparation de la commande entre deux miroirs déformables dans le système OA de GPI. Nous présentons tout d’abord une méthode utilisant des calculs analytiques et des simulations Monte Carlo pour déterminer les paramètres clés du woofer tels que son diamètre, son nombre d’éléments actifs et leur course qui ont ensuite eu des répercussions sur le design général de l’instrument. Ensuite, le système étudié utilisant un reconstructeur de Fourier, nous proposons de séparer la commande entre les deux miroirs dans l’espace de Fourier et de limiter les modes transférés au woofer à ceux qu’il peut précisément reproduire. Dans le contexte de GPI, ceci permet de remplacer deux matrices de 1600×69 éléments nécessaires pour une séparation “classique” de la commande par une seule de 45×69 composantes et ainsi d’utiliser un processeur prêt à être utilisé plutôt qu’une architecture informatique plus complexe.
Resumo:
Lors d'une intervention conversationnelle, le langage est supporté par une communication non-verbale qui joue un rôle central dans le comportement social humain en permettant de la rétroaction et en gérant la synchronisation, appuyant ainsi le contenu et la signification du discours. En effet, 55% du message est véhiculé par les expressions faciales, alors que seulement 7% est dû au message linguistique et 38% au paralangage. L'information concernant l'état émotionnel d'une personne est généralement inférée par les attributs faciaux. Cependant, on ne dispose pas vraiment d'instruments de mesure spécifiquement dédiés à ce type de comportements. En vision par ordinateur, on s'intéresse davantage au développement de systèmes d'analyse automatique des expressions faciales prototypiques pour les applications d'interaction homme-machine, d'analyse de vidéos de réunions, de sécurité, et même pour des applications cliniques. Dans la présente recherche, pour appréhender de tels indicateurs observables, nous essayons d'implanter un système capable de construire une source consistante et relativement exhaustive d'informations visuelles, lequel sera capable de distinguer sur un visage les traits et leurs déformations, permettant ainsi de reconnaître la présence ou absence d'une action faciale particulière. Une réflexion sur les techniques recensées nous a amené à explorer deux différentes approches. La première concerne l'aspect apparence dans lequel on se sert de l'orientation des gradients pour dégager une représentation dense des attributs faciaux. Hormis la représentation faciale, la principale difficulté d'un système, qui se veut être général, est la mise en œuvre d'un modèle générique indépendamment de l'identité de la personne, de la géométrie et de la taille des visages. La démarche qu'on propose repose sur l'élaboration d'un référentiel prototypique à partir d'un recalage par SIFT-flow dont on démontre, dans cette thèse, la supériorité par rapport à un alignement conventionnel utilisant la position des yeux. Dans une deuxième approche, on fait appel à un modèle géométrique à travers lequel les primitives faciales sont représentées par un filtrage de Gabor. Motivé par le fait que les expressions faciales sont non seulement ambigües et incohérentes d'une personne à une autre mais aussi dépendantes du contexte lui-même, à travers cette approche, on présente un système personnalisé de reconnaissance d'expressions faciales, dont la performance globale dépend directement de la performance du suivi d'un ensemble de points caractéristiques du visage. Ce suivi est effectué par une forme modifiée d'une technique d'estimation de disparité faisant intervenir la phase de Gabor. Dans cette thèse, on propose une redéfinition de la mesure de confiance et introduisons une procédure itérative et conditionnelle d'estimation du déplacement qui offrent un suivi plus robuste que les méthodes originales.
Resumo:
Ce mémoire s'intéresse à la détection de mouvement dans une séquence d'images acquises à l'aide d'une caméra fixe. Dans ce problème, la difficulté vient du fait que les mouvements récurrents ou non significatifs de la scène tels que les oscillations d'une branche, l'ombre d'un objet ou les remous d'une surface d'eau doivent être ignorés et classés comme appartenant aux régions statiques de la scène. La plupart des méthodes de détection de mouvement utilisées à ce jour reposent en fait sur le principe bas-niveau de la modélisation puis la soustraction de l'arrière-plan. Ces méthodes sont simples et rapides mais aussi limitées dans les cas où l'arrière-plan est complexe ou bruité (neige, pluie, ombres, etc.). Cette recherche consiste à proposer une technique d'amélioration de ces algorithmes dont l'idée principale est d'exploiter et mimer deux caractéristiques essentielles du système de vision humain. Pour assurer une vision nette de l’objet (qu’il soit fixe ou mobile) puis l'analyser et l'identifier, l'œil ne parcourt pas la scène de façon continue, mais opère par une série de ``balayages'' ou de saccades autour (des points caractéristiques) de l'objet en question. Pour chaque fixation pendant laquelle l'œil reste relativement immobile, l'image est projetée au niveau de la rétine puis interprétée en coordonnées log polaires dont le centre est l'endroit fixé par l'oeil. Les traitements bas-niveau de détection de mouvement doivent donc s'opérer sur cette image transformée qui est centrée pour un point (de vue) particulier de la scène. L'étape suivante (intégration trans-saccadique du Système Visuel Humain (SVH)) consiste ensuite à combiner ces détections de mouvement obtenues pour les différents centres de cette transformée pour fusionner les différentes interprétations visuelles obtenues selon ses différents points de vue.
Resumo:
The present study aimed at critically looking at the current practice of the installation of compacted clay liner using bentonite enhanced sand (BES). The application of bentonite is currently the most accepted practice for lining purposes. The ideal bentonite sand combination, which satisfies the liner requirements is 20% bentonite and 80% sand, was selected as one of the liner materials for the investigation of development of desiccation cracks. Locally available sundried marine clay and its combination with bentonite were also included in the study. The desiccation tests on liner materials were conducted for wet/dry cycles to simulate the seasonal variations. Digital image processing techniques were used to measure the crack intensity factor (CIF), a useful and effective parameter for quantification of desiccation cracking. The repeatability of the tests could be well established, as the variation in CIF values of identical samples had a very narrow range of 0 to 2%. The studies on the development of desiccation cracks showed that the CIF of bentonite enhanced sand mixture (BES) was 18.09%, 39.75% and 21.22% for the first, second and third cycles respectively, while it was only 9.83%, 7.52% and 4.58% respectively for sun dried marine clay (SMC). Thus the locally available, alternate liner material suggested, viz SMC, is far superior to BES, when subjected to alternate wet/dry cycles. Further, the improvement of these liner materials when amended with randomly distributed fibre reinforcements was also investigated. Three types of fibres ,namely nylon fibre, polypropylene monofilament and polypropylene fibre mesh were used for the study of fibre amended BES and SMC.The influence of these amendments on the properties of the above liner materials is also studied. The results showed that there is definite improvement in the properties of the liner materials when it is reinforced with discrete random fibres. The study also proved that the desiccation cracks could be controlled with the help of fibre reinforcement.
Resumo:
The present work deals with the A study of morphological opertors with applications. Morphology is now a.necessary tool for engineers involved with imaging applications. Morphological operations have been viewed as filters the properties of which have been well studied (Heijmans, 1994). Another well-known class of non-linear filters is the class of rank order filters (Pitas and Venetsanopoulos, 1990). Soft morphological filters are a combination of morphological and weighted rank order filters (Koskinen, et al., 1991, Kuosmanen and Astola, 1995). They have been introduced to improve the behaviour of traditional morphological filters in noisy environments. The idea was to slightly relax the typical morphological definitions in such a way that a degree of robustness is achieved, while most of the desirable properties of typical morphological operations are maintained. Soft morphological filters are less sensitive to additive noise and to small variations in object shape than typical morphological filters. They can remove positive and negative impulse noise, preserving at the same time small details in images. Currently, Mathematical Morphology allows processing images to enhance fuzzy areas, segment objects, detect edges and analyze structures. The techniques developed for binary images are a major step forward in the application of this theory to gray level images. One of these techniques is based on fuzzy logic and on the theory of fuzzy sets.Fuzzy sets have proved to be strongly advantageous when representing in accuracies, not only regarding the spatial localization of objects in an image but also the membership of a certain pixel to a given class. Such inaccuracies are inherent to real images either because of the presence of indefinite limits between the structures or objects to be segmented within the image due to noisy acquisitions or directly because they are inherent to the image formation methods.
Resumo:
Median filtering is a simple digital non—linear signal smoothing operation in which median of the samples in a sliding window replaces the sample at the middle of the window. The resulting filtered sequence tends to follow polynomial trends in the original sample sequence. Median filter preserves signal edges while filtering out impulses. Due to this property, median filtering is finding applications in many areas of image and speech processing. Though median filtering is simple to realise digitally, its properties are not easily analysed with standard analysis techniques,
Resumo:
Handwriting is an acquired tool used for communication of one's observations or feelings. Factors that inuence a person's handwriting not only dependent on the individual's bio-mechanical constraints, handwriting education received, writing instrument, type of paper, background, but also factors like stress, motivation and the purpose of the handwriting. Despite the high variation in a person's handwriting, recent results from different writer identification studies have shown that it possesses sufficient individual traits to be used as an identification method. Handwriting as a behavioral biometric has had the interest of researchers for a long time. But recently it has been enjoying new interest due to an increased need and effort to deal with problems ranging from white-collar crime to terrorist threats. The identification of the writer based on a piece of handwriting is a challenging task for pattern recognition. The main objective of this thesis is to develop a text independent writer identification system for Malayalam Handwriting. The study also extends to developing a framework for online character recognition of Grantha script and Malayalam characters
Resumo:
The work is intended to study the following important aspects of document image processing and develop new methods. (1) Segmentation ofdocument images using adaptive interval valued neuro-fuzzy method. (2) Improving the segmentation procedure using Simulated Annealing technique. (3) Development of optimized compression algorithms using Genetic Algorithm and parallel Genetic Algorithm (4) Feature extraction of document images (5) Development of IV fuzzy rules. This work also helps for feature extraction and foreground and background identification. The proposed work incorporates Evolutionary and hybrid methods for segmentation and compression of document images. A study of different neural networks used in image processing, the study of developments in the area of fuzzy logic etc is carried out in this work
Resumo:
Interfacings of various subjects generate new field ofstudy and research that help in advancing human knowledge. One of the latest of such fields is Neurotechnology, which is an effective amalgamation of neuroscience, physics, biomedical engineering and computational methods. Neurotechnology provides a platform to interact physicist; neurologist and engineers to break methodology and terminology related barriers. Advancements in Computational capability, wider scope of applications in nonlinear dynamics and chaos in complex systems enhanced study of neurodynamics. However there is a need for an effective dialogue among physicists, neurologists and engineers. Application of computer based technology in the field of medicine through signal and image processing, creation of clinical databases for helping clinicians etc are widely acknowledged. Such synergic effects between widely separated disciplines may help in enhancing the effectiveness of existing diagnostic methods. One of the recent methods in this direction is analysis of electroencephalogram with the help of methods in nonlinear dynamics. This thesis is an effort to understand the functional aspects of human brain by studying electroencephalogram. The algorithms and other related methods developed in the present work can be interfaced with a digital EEG machine to unfold the information hidden in the signal. Ultimately this can be used as a diagnostic tool.
Resumo:
Image processing has been a challenging and multidisciplinary research area since decades with continuing improvements in its various branches especially Medical Imaging. The healthcare industry was very much benefited with the advances in Image Processing techniques for the efficient management of large volumes of clinical data. The popularity and growth of Image Processing field attracts researchers from many disciplines including Computer Science and Medical Science due to its applicability to the real world. In the meantime, Computer Science is becoming an important driving force for the further development of Medical Sciences. The objective of this study is to make use of the basic concepts in Medical Image Processing and develop methods and tools for clinicians’ assistance. This work is motivated from clinical applications of digital mammograms and placental sonograms, and uses real medical images for proposing a method intended to assist radiologists in the diagnostic process. The study consists of two domains of Pattern recognition, Classification and Content Based Retrieval. Mammogram images of breast cancer patients and placental images are used for this study. Cancer is a disaster to human race. The accuracy in characterizing images using simplified user friendly Computer Aided Diagnosis techniques helps radiologists in detecting cancers at an early stage. Breast cancer which accounts for the major cause of cancer death in women can be fully cured if detected at an early stage. Studies relating to placental characteristics and abnormalities are important in foetal monitoring. The diagnostic variability in sonographic examination of placenta can be overlooked by detailed placental texture analysis by focusing on placental grading. The work aims on early breast cancer detection and placental maturity analysis. This dissertation is a stepping stone in combing various application domains of healthcare and technology.
Resumo:
Content Based Image Retrieval is one of the prominent areas in Computer Vision and Image Processing. Recognition of handwritten characters has been a popular area of research for many years and still remains an open problem. The proposed system uses visual image queries for retrieving similar images from database of Malayalam handwritten characters. Local Binary Pattern (LBP) descriptors of the query images are extracted and those features are compared with the features of the images in database for retrieving desired characters. This system with local binary pattern gives excellent retrieval performance
Resumo:
Cancer treatment is most effective when it is detected early and the progress in treatment will be closely related to the ability to reduce the proportion of misses in the cancer detection task. The effectiveness of algorithms for detecting cancers can be greatly increased if these algorithms work synergistically with those for characterizing normal mammograms. This research work combines computerized image analysis techniques and neural networks to separate out some fraction of the normal mammograms with extremely high reliability, based on normal tissue identification and removal. The presence of clustered microcalcifications is one of the most important and sometimes the only sign of cancer on a mammogram. 60% to 70% of non-palpable breast carcinoma demonstrates microcalcifications on mammograms [44], [45], [46].WT based techniques are applied on the remaining mammograms, those are obviously abnormal, to detect possible microcalcifications. The goal of this work is to improve the detection performance and throughput of screening-mammography, thus providing a ‘second opinion ‘ to the radiologists. The state-of- the- art DWT computation algorithms are not suitable for practical applications with memory and delay constraints, as it is not a block transfonn. Hence in this work, the development of a Block DWT (BDWT) computational structure having low processing memory requirement has also been taken up.