885 resultados para Teaching of History and Geography
Resumo:
The relationship between toxic marine microalgae species and climate change has become a high profile and well discussed topic in recent years, with research focusing on the possible future impacts of changing hydrological conditions on Harmful Algal Bloom (HAB) species around the world. However, there is very little literature concerning the epidemiology of these species on marine organisms and human health. Here, we examine the current state of toxic microalgae species around the UK, in two ways: first we describe the key toxic syndromes and gather together the disparate reported data on their epidemiology from UK records and monitoring procedures. Secondly, using NHS hospital admissions and GP records from Wales, we attempt to quantify the incidence of shellfish poisoning from an independent source. We show that within the UK, outbreaks of shellfish poisoning are rare but occurring on a yearly basis in different regions and affecting a diverse range of molluscan shellfish and other marine organisms. We also show that the abundance of a species does not necessarily correlate to the rate of toxic events. Based on routine hospital records, the numbers of shellfish poisonings in the UK are very low, but the identification of the toxin involved, or even a confirmation of a poisoning event is extremely difficult to diagnose. An effective shellfish monitoring system, which shuts down aquaculture sites when toxins exceed regularity limits, has clearly prevented serious impact to human health, and remains the only viable means of monitoring the potential threat to human health. However, the closure of these sites has an adverse economic impact, and the monitoring system does not include all toxic plankton. The possible geographic spreading of toxic microalgae species is therefore a concern, as warmer waters in the Atlantic could suit several species with southern biogeographical affinities enabling them to occupy the coastal regions of the UK, but which are not yet monitored or considered to be detrimental.
Resumo:
Vestimentiferan tube worms living at deep-sea hydrothermal vents and cold seeps have been considered as a clade with a long and continuing evolutionary history in these ecosystems. Whereas the fossil record appears to support this view, molecular age estimates do not. The two main features that are used to identify vestimentiferan tubes in the fossil record are longitudinal ridges on the tube's surface and a tube wall constructed of multiple layers. It is shown here that chaetopterid tubes from modern vents and seeps—as well as a number of fossil tubes from shallow-water environments—also show these two features. This calls for a more cautious interpretation of tubular fossils from ancient vent and seep deposits. We suggest that: current estimates for a relatively young evolutionary age based on molecular clock methods may be more reliable than the inferences of ancient “vestimentiferans” based on putative fossils of these worms; not all of these putative fossils actually belong to this group; and that tubes from fossil seeps should be investigated for chitinous remains to substantiate claims of their potential siboglinid affinities.