307 resultados para Tailoring
Resumo:
In their discussion - Participative Budgeting and Participant Motivation: A Review of the Literature - by Frederick J. Demicco, Assistant Professor, School of Hotel, Restaurant and Institutional Management, The Pennsylvania State University and Steven J. Dempsey, Fulton F. Galer, Martin Baker, Graduate Assistants, College of Business at Virginia Polytechnic Institute and State University, the authors initially observe: “In recent years behavioral literature has stressed the importance of participation In goal-setting by those most directly affected by those goals. The common postulate is that greater participation by employees in the various management functions, especially the planning function, will lead to improved motivation, performance, coordination, and functional behavior. The authors analyze this postulate as it relates to the budgeting process and discuss whether or not participative budgeting has a significant positive impact on the motivations of budget participants.” In defining the concept of budgeting, the authors offer: “Budgeting is usually viewed as encompassing the preparation and adoption of a detailed financial operating plan…” In furthering that statement they also furnish that budgeting’s focus is to influence, in a positive way, how managers plan and coordinate the activities of a property in a way that will enhance their own performance. In essence, framing an organization within its described boundaries, and realizing its established goals. The authors will have you know, to control budget is to control operations. What kind of parallels can be drawn between the technical methods and procedures of budgeting, and managerial behavior? “In an effort to answer this question, Ronen and Livingstone have suggested that a fourth objective of budgeting exists, that of motivation,” say the authors with attribution. “The managerial function of motivation is manipulative in nature.” Demicco, Dempsey, Galer, and Baker attempt to quantify motivation as a psychological premise using the expectancy theory, which encompasses empirical support, intuitive appeal, and ease of application to the budgetary process. They also present you with House's Path-Goal model; essentially a mathematics type formula designed to gauge motivation. You really need to see this. The views of Argyris are also explored in particular detail. Although, the Argyris study was primarily aimed at manufacturing firms, and the effects on line-supervisors of the manufacturing budgets which were used to control and evaluate their performance, its application is relevant to the hospitality industry. As the title suggests, other notables in the field of behavioral motivation theory, and participation are also referenced. “Behavioral theory has been moving away from models of purported general applicability toward contingency models that are suited for particular situations,” say the authors in closing. “It is conceivable that some time in the future, contingency models will make possible the tailoring of budget strategies to individual budget holder personalities.”
Resumo:
As researchers and practitioners move towards a vision of software systems that configure, optimize, protect, and heal themselves, they must also consider the implications of such self-management activities on software reliability. Autonomic computing (AC) describes a new generation of software systems that are characterized by dynamically adaptive self-management features. During dynamic adaptation, autonomic systems modify their own structure and/or behavior in response to environmental changes. Adaptation can result in new system configurations and capabilities, which need to be validated at runtime to prevent costly system failures. However, although the pioneers of AC recognize that validating autonomic systems is critical to the success of the paradigm, the architectural blueprint for AC does not provide a workflow or supporting design models for runtime testing. ^ This dissertation presents a novel approach for seamlessly integrating runtime testing into autonomic software. The approach introduces an implicit self-test feature into autonomic software by tailoring the existing self-management infrastructure to runtime testing. Autonomic self-testing facilitates activities such as test execution, code coverage analysis, timed test performance, and post-test evaluation. In addition, the approach is supported by automated testing tools, and a detailed design methodology. A case study that incorporates self-testing into three autonomic applications is also presented. The findings of the study reveal that autonomic self-testing provides a flexible approach for building safe, reliable autonomic software, while limiting the development and performance overhead through software reuse. ^
Resumo:
Recent developments in tailoring the structural and chemical properties of colloidal metal nanoparticles (NPs) have led to significant enhancements in catalyst performance. Controllable colloidal synthesis has also allowed tailor-made NPs to serve as mechanistic probes for catalytic processes. The innovative use of colloidal NPs to gain fundamental insights into catalytic function will be highlighted across a variety of catalytic and electrocatalytic applications. The engineering of future heterogenous catalysts is also moving beyond size, shape and composition considerations. Advancements in understanding structure-property relationships have enabled incorporation of complex features such as tuning surface strain to influence the behavior of catalytic NPs. Exploiting plasmonic properties and altering colloidal surface chemistry through functionalization are also emerging as important areas for rational design of catalytic NPs. This news article will highlight the key developments and challenges to the future design of catalytic NPs.
Resumo:
Green energy and Green technology are the most of the quoted terms in the context of modern science and technology. Technology which is close to nature is the necessity of the modern world which is haunted by global warming and climatic alterations. Proper utilization of solar energy is one of the goals of Green Energy Movement. The present thesis deals with the work carried out in the eld of nanotechnology and its possible use in various applications (employing natural dyes) like solar cells. Unlike arti cial dyes, the natural dyes are available, easy to prepare, low in cost, non-toxic, environmentally friendly and fully biodegradable. Looking to the 21st century, the nano/micro sciences will be a chief contributor to scienti c and technological developments. As nanotechnology progresses and complex nanosystems are fabricated, a growing impetus is being given to the development of multi-functional and size-dependent materials. The control of the morphology, from the nano to the micrometer scales, associated with the incorporation of several functionalities can yield entirely new smart hybrid materials. They are special class of materials which provide a new method for the improvement of the environmental stability of the material with interesting optical properties and opening a land of opportunities for applications in the eld of photonics. Zinc oxide (ZnO) is one such multipurpose material that has been explored for applications in sensing, environmental monitoring, and bio-medical systems and communications technology. Understanding the growth mechanism and tailoring their morphology is essential for the use of ZnO crystals as nano/micro electromechanical systems and also as building blocks of other nanosystems.
Resumo:
In recent years, nanoscience and nanotechnology has emerged as one of the most important and exciting frontier areas of research interest in almost all fields of science and technology. This technology provides the path of many breakthrough changes in the near future in many areas of advanced technological applications. Nanotechnology is an interdisciplinary area of research and development. The advent of nanotechnology in the modern times and the beginning of its systematic study can be thought of to have begun with a lecture by the famous physicist Richard Feynman. In 1960 he presented a visionary and prophetic lecture at the meeting of the American Physical Society entitled “there is plenty of room at the bottom” where he speculated on the possibility and potential of nanosized materials. Synthesis of nanomaterials and nanostructures are the essential aspects of nanotechnology. Studies on new physical properties and applications of nanomaterials are possible only when materials are made available with desired size, morphology, crystal structure and chemical composition. Cerium oxide (ceria) is one of the important functional materials with high mechanical strength, thermal stability, excellent optical properties, appreciable oxygen ion conductivity and oxygen storage capacity. Ceria finds a variety of applications in mechanical polishing of microelectronic devices, as catalysts for three-way automatic exhaust systems and as additives in ceramics and phosphors. The doped ceria usually has enhanced catalytic and electrical properties, which depend on a series of factors such as the particle size, the structural characteristics, morphology etc. Ceria based solid solutions have been widely identified as promising electrolytes for intermediate temperature solid oxide fuel cells (SOFC). The success of many promising device technologies depends on the suitable powder synthesis techniques. The challenge for introducing new nanopowder synthesis techniques is to preserve high material quality while attaining the desired composition. The method adopted should give reproducible powder properties, high yield and must be time and energy effective. The use of a variety of new materials in many technological applications has been realized through the use of thin films of these materials. Thus the development of any new material will have good application potential if it can be deposited in thin film form with the same properties. The advantageous properties of thin films include the possibility of tailoring the properties according to film thickness, small mass of the materials involved and high surface to volume ratio. The synthesis of polymer nanocomposites is an integral aspect of polymer nanotechnology. By inserting the nanometric inorganic compounds, the properties of polymers can be improved and this has a lot of applications depending upon the inorganic filler material present in the polymer.
Resumo:
Chronic Obstructive Pulmonary Disease (COPD) phenotypes have become increasingly recognized as important for grouping patients with similar presentation and/or behavior, within the heterogeneity of the disease. The primary aim of identifying phenotypes is to provide patients with the best health care possible, tailoring the therapeutic approach to each patient. However, the identification of specific phenotypes has been hindered by several factors such as which specific attributes are relevant, which discriminant features should be used for assigning patients to specific phenotypes, and how relevant are they to the therapeutic approach, prognostic and clinical outcome. Moreover, the definition of phenotype is still not consensual. Comorbidities, risk factors, modifiable risk factors and disease severity, although not phenotypes, have impact across all COPD phenotypes. Although there are some identified phenotypes that are fairly consensual, many others have been proposed, but currently lack validation. The on-going debate about which instruments and tests should be used in the identification and definition of phenotypes has contributed to this uncertainty. In this paper, the authors review present knowledge regarding COPD phenotyping, discuss the role of phenotypes and comorbidities on the severity of COPD, propose new phenotypes and suggest a phenotype-based pharmacological therapeutic approach. The authors conclude that a patient-tailored treatment approach, which takes into account each patient's specific attributes and specificities, should be pursued.
Resumo:
Au cours des années une variété des compositions de verre chalcogénure a été étudiée en tant qu’une matrice hôte pour les ions Terres Rares (TR). Pourtant, l’obtention d’une matrice de verre avec une haute solubilité des ions TR et la fabrication d’une fibre chalcogénure dopée au TR avec une bonne qualité optique reste toujours un grand défi. La présente thèse de doctorat se concentre sur l’étude de nouveaux systèmes vitreux comme des matrices hôtes pour le dopage des ions TR, ce qui a permis d’obtenir des fibres optiques dopées au TR qui sont transparents dans l’IR proche et moyenne. Les systèmes vitreux étudiés ont été basés sur le verre de sulfure d’arsenic (As2S3) co-dopé aux ions de Tm3+ et aux différents modificateurs du verre. Premièrement, l’addition de Gallium (Ga), comme un co-dopant, a été examinée et son influence sur les propriétés d’émission des ions de Tm a été explorée. Avec l’incorporation de Ga, la matrice d’As2S3 dopée au Tm a montré trois bandes d’émission à 1.2 μm (1H5→3H6), 1.4 μm (3H4→3F4) et 1.8 μm (3F4→3H6), sous l’excitation des longueurs d’onde de 698 nm et 800 nm. Les concentrations de Tm et de Ga ont été optimisées afin d’obtenir le meilleur rendement possible de photoluminescence. À partir de la composition optimale, la fibre Ga-As-S dopée au Tm3+ a été étirée et ses propriétés de luminescence ont été étudiées. Un mécanisme de formation structurale a été proposé pour ce système vitreux par la caractérisation structurale des verres Ga-As-S dopés au Tm3+, en utilisant la spectroscopie Raman et l’analyse de spectrométrie d’absorption des rayons X (EXAFS) à seuil K d’As, seuil K de Ga et seuil L3 de Tm et il a été corrélé avec les caractéristiques de luminescence de Tm. Dans la deuxième partie, la modification des verres As2S3 dopés au Tm3+, avec l’incorporation d’halogénures (Iode (I2)), a été étudiée en tant qu’une méthode pour l’adaptation des paramètres du procédé de purification afin d’obtenir une matrice de verre de haute pureté par distillation chimique. Les trois bandes d’émission susmentionnées ont été aussi bien observées pour ce système sous l’excitation à 800 nm. Les propriétés optiques, thermiques et structurelles de ces systèmes vitreux ont été caractérisées expérimentalement en fonction de la concentration d’I2 et de Tm dans le verre, où l’attention a été concentrée sur deux aspects principaux: l’influence de la concentration d’I2 sur l’intensité d’émission de Tm et les mécanismes responsables pour l’augmentation de la solubilité des ions de Tm dans la matrice d’As2S3 avec l’addition I2.
Resumo:
BACKGROUND: Improving the quality of health care services requires tailoring facilities to fulfil patients' needs. Satisfying patients' healthcare needs, listening to patients' opinions and building a closer provider-user partnership are central to the NHS. Few published studies have discussed cardiovascular patients' health needs, but they are not comprehensive and fail to explore the contribution of outcome to needs assessment. METHOD: A comprehensive self-administered health needs assessment (HNA) questionnaire was developed for concomitant use with generic (Short Form-12 and EuroQOL) and specific (Seattle Angina Questionnaire) health-related quality of life (HRQL) instruments on 242 patients admitted to the Acute Cardiac Unit, Nottingham. RESULTS: 38% reported difficulty accessing health facilities, 56% due to transport and 32% required a travelling companion. Mean HRQOL scores were lower in those living alone (P < 0.05) or who reported unsatisfactory accommodation. Dissatisfaction with transport affected patients' ease of access to healthcare facilities (P < 0.001). Younger patients (<65 y) were more likely to be socially isolated (P = 0.01). Women and patients with chronic disease were more likely to be concerned about housework (P < 0.05). Over 65 s (p < 0.05) of higher social classes (p < 0.01) and greater physical needs (p < 0.001) had more social needs, correlating moderately (0.32 < r < 0.63) with all HRQL domains except SAQ-AS. Several HRQL components were highly correlated with the HNA physical score (p < 0.001). CONCLUSIONS: Patients wanted more social (suitable accommodation, companionship, social visits) and physical (help aids, access to healthcare services, house work) support. The construct validity and intra-class reliability of the HNA tool were confirmed. Our results indicate a gap between patients' health needs and available services, highlighting potential areas for improvement in the quality of services
Resumo:
Poly(lactide-co-glycolide), or PLGA, microspheres offer a widely-studied biodegradable option for controlled release of therapeutics. An array of fabrication methodologies have been developed to produce these microspheres with the capacity to encapsulate therapeutics of various types; and produce microspheres of a wide range of sizes for different methods of delivery. The encapsulation, stability, and release profiles of therapeutic release based on physical and thermodynamic properties has also been studied and modeled to an extent. Much research has been devoted to tailoring formulations for improved therapeutic encapsulation and stability as well as selective release profiles. Despite the breadth of available research on PLGA microspheres, further analysis of fundamental principles regarding the microsphere degradation, formation, and therapeutic encapsulation is necessary. This work aims to examine additional fundamental principles related to PLGA microsphere formation and degradation from solvent-evaporation of preformed polymer. In particular, mapping the development of the acidic microenvironment inside the microsphere during degradation and erosion is discussed. Also, the effect of macromolecule size and conformation is examined with respect to microsphere diameter and PLGA molecular weight. Lastly, the effects of mechanical shearing and protein exposure to aqueous media during microsphere formation are examined. In an effort to better understand the acidic microenvironment development across the microsphere diameter, pH sensitive dye conjugated to protein that undergoes conformational change at different acidic pH values was encapsulated in PLGA microspheres of diameters ranging from 40 µm to 80 µm, and used in conjunction with fluorescence resonance energy transfer to measure the radial pH change in the microspheres. Qualitative analysis of confocal micrographs was used to correlate fluorescence intensity with pH value, and obtain the radial pH across the center of the microsphere. Therapeutic encapsulation and release from polymeric microspheres is governed by an interconnected variety of factors, including the therapeutic itself. The globular protein bovine serum albumin, and the elongated and significantly smaller enzyme, lysozyme, were encapsulated in PLGA microspheres ranging from 40 µm to 80 µm in diameter. The initial surface morphology upon microsphere formation, release profiles, and microsphere erosion characteristics were explored in an effort to better understand the effect of protein size, conformation, and known PLGA interaction on the formation and degradation of PLGA microspheres and macromolecule release, with respect to PLGA molecular weight and microsphere diameter. In addition to PLGA behavior and macromolecule behavior, the effect of mechanical stresses during fabrication was examined. Two similar solvent extraction techniques were compared for the fabrication of albumin loaded microspheres. In particular, the homogeneity of the microspheres as well as capacity to retain encapsulated albumin were compared. This preliminary study paves the way for a more rigorous treatment of the effect of mechanical forces present in popular microsphere fabrication. Several factors affecting protein release from PLGA microspheres are examined herein. The technique explored for spatial resolution of the pH inside the microsphere proved mildly effective in producing a reliable method of mapping microsphere pH changes. However, notable trends with respect to microsphere size, PLGA molecular weight, and microsphere porosity were observed. Proposed methods of improving spatial resolution of the acidic microenvironment are also provided. With respect to microsphere formation, studies showed that albumin and lysozyme had little effect on the internal homogeneity of the microsphere. Rather, ionic interactions with PLGA played a more significant role in the encapsulation and release of each macromolecule. Studies also showed that higher instances of mechanical stress led to less homogeneous microspheres with lower protein encapsulation. This suggests that perhaps instead of or in addition to modifying the microsphere formation formulation, the fabrication technique itself should be more closely considered in achieving homogeneous microspheres with desired loading.
Resumo:
This exploratory case study examines the role of culture in Chinese-English conference interpreting. Given that there has been a lack of empirical research in understanding the role of culture in conference interpreting through the lens of intercultural communication frameworks, we know relatively little about conference interpreters’ experiences with intercultural communication challenges. This project helps address this research gap by investigating the types of intercultural communication challenges that Chinese-English conference interpreters experience and their strategies in managing those challenges. This study hears the voices of both professionals and postgraduate interpreting students. A total number of 27 participants were recruited for this research. Twenty professional conference interpreter were interviewed and seven interpreting students were organized for a focus group discussion. Grounded theory was used to analyze the participants’ observations and strategies in managing intercultural communication challenges when doing Chinese-English conference interpreting. The data analysis process led to the emergence of two procedural guidelines and one process – Interpreters’ Intercultural Mediation Process. The two procedural guidelines offer guidance for the interpreters to provide the most appropriate and effective service: meet with the clients beforehand and be prepared to offer intercultural insights when consulted. Interpreters are found to follow the Interpreters’ Intercultural Mediation Process to decide when and how to mediate intercultural communication challenges at work. This Process includes four criteria, seven intercultural challenges, and seven coping strategies. This study offers theoretical and applied contributions to our understanding of the role of culture in interpreting. By jointly applying frameworks from intercultural communication and interpreting studies to examine the conference interpreting process, this case study makes great efforts to connect the field of intercultural communication with the field of interpreting studies. This study identifies the types of intercultural differences that would lead to challenges in Chinese-English conference interpreting. It also contributes to the call for a cultural turn in interpreting studies. By learning the two procedural guidelines, conference interpreters can be better prepared for their work. By following the Interpreters’ Intercultural Mediation Process, conference interpreters can better anticipate and manage the intercultural challenges at work. This study also offers guidance on tailoring intercultural communication courses for postgraduate interpreting training programs.
Resumo:
L’irinotécan est un agent de chimiothérapie largement utilisé pour le traitement de tumeurs solides, particulièrement pour le cancer colorectal métastatique (mCRC). Fréquemment, le traitement par l’irinotécan conduit à la neutropénie et la diarrhée, des effets secondaires sévères qui peuvent limiter la poursuite du traitement et la qualité de vie des patients. Plusieurs études pharmacogénomiques ont évalué les risques associés à la chimiothérapie à base d’irinotécan, en particulier en lien avec le gène UGT1A, alors que peu d’études ont examiné l’impact des gènes codant pour des transporteurs. Par exemple, le marqueur UGT1A1*28 a été associé à une augmentation de 2 fois du risque de neutropénie, mais ce marqueur ne permet pas de prédire la toxicité gastrointestinale ou l’issue clinique. L’objectif de cette étude était de découvrir de nouveaux marqueurs génétiques associés au risque de toxicité induite par l’irinotécan, en utilisant une stratégie d’haplotype/SNP-étiquette permettant de maximiser la couverture des loci génétiques ciblés. Nous avons analysé les associations génétiques des loci UGT1 et sept gènes codants pour des transporteurs ABC impliqués dans la pharmacocinétique de l’irinotécan, soient ABCB1, ABCC1, ABCC2, ABCC5, ABCG1, ABCG2 ainsi que SLCO1B1. Les profils de 167 patients canadiens atteints de mCRC sous traitement FOLFIRI (à base d’irinotécan) ont été examinés et les marqueurs significatifs ont par la suite été validés dans une cohorte indépendante de 250 patients italiens. Nous avons découvert dans la région intergénique en aval du gène UGT1, un nouveau marqueur (rs11563250G) associé à un moindre risque de neutropénie sévère (rapport des cotes (RC)=0.21; p=0.043 chez les canadiens, RC=0.27; p=0.036 chez les italiens, et RC=0.31 p=0.001 pour les deux cohortes combinées). De plus, le RC est demeuré significatif après correction pour multiples comparaisons (p=0.041). Par ailleurs, pour l’haplotype défini par les marqueurs rs11563250G et UGT1A1*1 (rs8175347 TA6), le RC était de 0.17 (p=0.0004). Un test génétique évaluant ces marqueurs permettrait d’identifier les patients susceptibles de bénéficier d’une augmentation de dose d’irinotécan. En revanche, une autre combinaison de marqueurs, ABCC5 rs3749438 et rs10937158 (T–C), a prédit un risque plus faible de diarrhée sévère dans les deux cohortes (RC = 0.43; p=0.001). La coexistence des marqueurs ABCG1 rs225440T et ABCC5 rs2292997A a prédit un risque accru de neutropénie (RC=5.93; p=0.0002), alors qu’une prédiction encore plus significative a été obtenue lorsque ces marqueurs sont combinés au marqueur de risque bien établi UGT1A1*28 rs8175347 (RC=7.68; p<0.0001). Enfin, les porteurs de l’allèle de protection UGT1 rs11563250G en absence d’allèles de risque, ont montré une incidence réduite de neutropénie sévère (8.2% vs. 34.0%; p<0.0001). Nous concluons que ces nouveaux marqueurs génétiques prédictifs pourraient permettre d’améliorer l’évaluation du risque de toxicité et personnaliser le traitement à base d’irinotécan pour les patients atteints du cancer colorectal métastatique.
Resumo:
This thesis demonstrates exciton engineering in semiconducting single-walled carbon nanotubes through tunable fluorescent quantum defects. By introducing different functional moieties on the sp2 lattice of carbon nanotubes, the nanotube photoluminescence is systematically tuned over 68 meV in the second near-infrared window. This new class of quantum emitters is enabled by a new chemistry that allows covalent attachment of alkyl/aryl functional groups from their iodide precursors in aqueous solution. Using aminoaryl quantum defects, we show that the pH and temperature of complex fluids can be optically measured through defect photoluminescence that encodes the local environment information. Furthermore, defect-bound trions, which are electron-hole-electron tri-carrier quasi-particles, are observed in alkylated single-walled carbon nanotubes at room temperature with surprisingly high photoluminescence brightness. Collectively, the emission from defect-bound excitons and trions in (6,5)-single walled carbon nanotubes is 18-fold brighter than that of the native exciton. These findings pave the way to chemical tailoring of the electronic and optical properties of carbon nanostructures with fluorescent quantum defects and may find applications in optoelectronics and bioimaging.
Resumo:
Solution-grown colloidal nanocrystal (NC) materials represent ideal candidates for optoelectronic devices, due to the flexibility with which they can be synthesized, the ease with which they can be processed for devicefabrication purposes and, foremost, for their excellent and size-dependent tunable optical properties, such as high photoluminescence (PL) quantum yield, color purity, and broad absorption spectra up to the near infrared. The advent of surfactant-assisted synthesis of thermodynamically stable colloidal solutions of NCs has led to peerless results in terms of uniform size distribution, composition, rational shape-design and the possibility of building heterostructured NCs (HNCs) comprising two or more different materials joined together. By tailoring the composition, shape and size of each component, HNCs with gradually higher levels of complexity have been conceived and realized, which are endowed with outstanding characteristics and optoelectronic properties. In this review, we discuss recent advances in the design of HNCs for efficient light-emitting diodes (LEDs) and photovoltaic (PV) solar cell devices. In particular, we will focus on the materials required to obtain superior optoelectronic quality and efficient devices, as well as their preparation and processing potential and limitations
Resumo:
O carcinoma do endométrio apresenta uma taxa de incidência em Portugal de cerca de 7.2%, sendo a 5ª neoplasia mais comum na mulher. Apesar de apresentar uma prevalência relativamente elevada, o seu prognóstico global é favorável, uma vez que 75% dos casos são diagnosticados em estádio precoce. O estudo por ressonância magnética é geralmente efectuado após a realização de uma ecografia para avaliação de uma hemorragia uterina anormal e após o diagnóstico histológico por histeroscopia ou ressecção. Contudo, a ressonância magnética pode apresentar um papel determinante no diagnóstico em casos de impossibilidade de biópsia e nos quais a biópsia é inconclusiva. Além do mais, apesar de esta técnica não ser contemplada na classificação para o estadiamento do carcinoma do endométrio da International Federation of Gynecology and Obstetrics de 2009, apresenta uma função fundamental no estadiamento pré-operatório destas doentes, sendo crucial para definir a abordagem cirúrgica e terapêutica. No presente artigo, as autoras descrevem o estado da arte da ressonância magnética funcional no diagnóstico e no estadiamento do carcinoma do endométrio, chamando a atenção para o papel do estudo dinâmico após administração de contraste endovenoso e do estudo ponderado em difusão nestes cenários através da revisão da literatura mais recente sobre este tópico.
Resumo:
Hypothesis: The possibility of tailoring the final properties of environmentally friendly waterborne polyurethane and polyurethane-urea dispersions and the films they produce makes them attractive for a wide range of applications. Both the reagents content and the synthesis route contribute to the observed final properties. Experiments: A series of polyurethane-urea and polyurethane aqueous dispersions were synthesized using 1,2-ethanediamine and/or 1,4-butanediol as chain extenders. The diamine content was varied from 0 to 4.5 wt%. Its addition was carried out either by the classical heterogeneous reaction medium (after phase inversion step), or else by the alternative homogeneous medium (prior to dispersion formation). Dispersions as well as films prepared from dispersions have been later extensively characterized. Findings: 1,2-Ethanediamine addition in heterogeneous medium leads to dispersions with high particle sizes and broad distributions whereas in homogeneous medium, lower particle sizes and narrow distributions were observed, thus leading to higher uniformity and cohesiveness among particles during film formation. Thereby, stress transfer is favored adding the diamine in a homogeneous medium; and thus the obtained films presented quite higher stress and modulus values. Furthermore, the higher uniformity of films tends to hinder water molecules transport through the film, resulting, in general, in a lower water absorption capacity.