1000 resultados para Système nerveux autonome cardiaque
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
L’obésité est un facteur de risque lié à des problèmes physiques, émotionnels et comportementaux. Aujourd’hui, l’alimentation est composée d’un régime typiquement occidental «Western diet» qui est riche en acides gras saturés (AGS) et pauvre en acides gras polyinsaturés (AGPI) tel que les oméga-3 (N-3) et occasionnant un déséquilibre du ratio alimentaire N-6/N-3. Ce déséquilibre est une des causes de la prévalence des maladies mentales y compris celles des troubles de l'humeur et de l’anxiété. L’acide docosahexaénoïque (ADH, 22: 6 n-3) est l’acide gras (AG) le plus abondant dans le cerveau et son accumulation est particulièrement élevée pendant la période périnatale. Il joue un rôle important dans le développement neuronal et d'autres fonctions du cerveau tel l'apprentissage et la mémoire. Des perturbations de l’environnement périnatal peuvent influencer à très long terme l’avenir de la descendance en la rendant plus susceptible de développer des problèmes d’obésité dans un contexte nutritionnel riche. On ignore cependant si le déficit alimentaire chez la mère et particulièrement en ADH aura un impact sur la motivation alimentaire de la progéniture. L’objectif principal de cette thèse est d’étudier le rôle potentiel des N-3 sur la balance énergétique, la motivation alimentaire, la dépression et le niveau d’anxiété des descendants de souris mâles adultes assujetties à une alimentation riche en gras. Nos données ont démontré qu‘un régime maternel déficitaire en ADH durant la période périnatale incitait la descendance à fournir plus d’effort afin d’obtenir un aliment palatable. Ceci entraînerait un dérèglement de l’homéostasie énergétique en augmentant le gain de poids et en diminuant l’activité locomotrice tout en exacerbant le comportement de type anxieux dès que les souris sont exposées à un milieu obésogène. Les acides gras libres (AGL) sont des nutriments essentiels fonctionnant comme des molécules de signalisation dans le cerveau en ayant des récepteurs qui jouent un rôle important dans le contrôle du métabolisme énergétique. Parmi eux, on distingue un récepteur couplé à la protéine G (GPCR), le GPR120. Ce récepteur activé par les AGPI ω-3 intervient dans les mécanismes anti-inflammatoires et insulino-résistants via les N-3. Une mutation dans le gène GPR120 occasionnée par une réduction de l’activité de signalisation du gène est liée à l’obésité humaine. L'objectif premier de cette deuxième étude était d’évaluer l'impact de la stimulation pharmacologique de GPR120 dans le système nerveux central (SNC) sur l'alimentation, les dépenses d'énergie, le comportement de type anxieux et la récompense alimentaire. Nos résultats démontrent qu’une injection centrale aiguë d'agoniste GPR120 III réduit la prise alimentaire ad libitum et la motivation alimentaire pour un aliment riche en gras et en sucre; ainsi que les comportements de type anxieux. L’injection centrale chronique (21 jours) de ce même agoniste GPR120 III transmis par une pompe osmotique a démontré que les souris placées sous diète hypercalorique (HFD n’ont présenté aucune modification lors de la prise alimentaire ni de gain de poids mais qu’il y avait comparativement au groupe de véhicule, une réduction du comportement de type anxieux, que ce soit dans le labyrinthe en croix surélevé (LCS) ou dans le test à champ ouvert (OFT). L’ADH est reconnu pour ses propriétés anorexigènes au niveau central. De plus, la stimulation des récepteurs de GPR120 au niveau du cerveau avec un agoniste synthétique peut produire un effet intense intervenir sur le comportement lié à l'alimentation des rongeurs. Trouver une approche visant à contrôler à la fois la neuroinflammation, la récompense alimentaire et les troubles émotionnels aiderait assurément au traitement de l'obésité et du diabète de type 2.
Resumo:
À la fin du 19e siècle, Dr. Ramón y Cajal, un pionnier scientifique, a découvert les éléments cellulaires individuels, appelés neurones, composant le système nerveux. Il a également remarqué la complexité de ce système et a mentionné l’impossibilité de ces nouveaux neurones à être intégrés dans le système nerveux adulte. Une de ses citations reconnues : “Dans les centres adultes, les chemins nerveux sont fixes, terminés, immuables. Tout doit mourir, rien ne peut être régénérer” est représentative du dogme de l’époque (Ramón y Cajal 1928). D’importantes études effectuées dans les années 1960-1970 suggèrent un point de vue différent. Il a été démontré que les nouveaux neurones peuvent être générés à l’âge adulte, mais cette découverte a créé un scepticisme omniprésent au sein de la communauté scientifique. Il a fallu 30 ans pour que le concept de neurogenèse adulte soit largement accepté. Cette découverte, en plus de nombreuses avancées techniques, a ouvert la porte à de nouvelles cibles thérapeutiques potentielles pour les maladies neurodégénératives. Les cellules souches neurales (CSNs) adultes résident principalement dans deux niches du cerveau : la zone sous-ventriculaire des ventricules latéraux et le gyrus dentelé de l’hippocampe. En condition physiologique, le niveau de neurogenèse est relativement élevé dans la zone sous-ventriculaire contrairement à l’hippocampe où certaines étapes sont limitantes. En revanche, la moelle épinière est plutôt définie comme un environnement en quiescence. Une des principales questions qui a été soulevée suite à ces découvertes est : comment peut-on activer les CSNs adultes afin d’augmenter les niveaux de neurogenèse ? Dans l’hippocampe, la capacité de l’environnement enrichi (incluant la stimulation cognitive, l’exercice et les interactions sociales) à promouvoir la neurogenèse hippocampale a déjà été démontrée. La plasticité de cette région est importante, car elle peut jouer un rôle clé dans la récupération de déficits au niveau de la mémoire et l’apprentissage. Dans la moelle épinière, des études effectuées in vitro ont démontré que les cellules épendymaires situées autour du canal central ont des capacités d’auto-renouvellement et de multipotence (neurones, astrocytes, oligodendrocytes). Il est intéressant de noter qu’in vivo, suite à une lésion de la moelle épinière, les cellules épendymaires sont activées, peuvent s’auto-renouveller, mais peuvent seulement ii donner naissance à des cellules de type gliale (astrocytes et oligodendrocytes). Cette nouvelle fonction post-lésion démontre que la plasticité est encore possible dans un environnement en quiescence et peut être exploité afin de développer des stratégies de réparation endogènes dans la moelle épinière. Les CSNs adultes jouent un rôle important dans le maintien des fonctions physiologiques du cerveau sain et dans la réparation neuronale suite à une lésion. Cependant, il y a peu de données sur les mécanismes qui permettent l'activation des CSNs en quiescence permettant de maintenir ces fonctions. L'objectif général est d'élucider les mécanismes sous-jacents à l'activation des CSNs dans le système nerveux central adulte. Pour répondre à cet objectif, nous avons mis en place deux approches complémentaires chez les souris adultes : 1) L'activation des CSNs hippocampales par l'environnement enrichi (EE) et 2) l'activation des CSNs de la moelle épinière par la neuroinflammation suite à une lésion. De plus, 3) afin d’obtenir plus d’information sur les mécanismes moléculaires de ces modèles, nous utiliserons des approches transcriptomiques afin d’ouvrir de nouvelles perspectives. Le premier projet consiste à établir de nouveaux mécanismes cellulaires et moléculaires à travers lesquels l’environnement enrichi module la plasticité du cerveau adulte. Nous avons tout d’abord évalué la contribution de chacune des composantes de l’environnement enrichi à la neurogenèse hippocampale (Chapitre II). L’exercice volontaire promeut la neurogenèse, tandis que le contexte social augmente l’activation neuronale. Par la suite, nous avons déterminé l’effet de ces composantes sur les performances comportementales et sur le transcriptome à l’aide d’un labyrinthe radial à huit bras afin d’évaluer la mémoire spatiale et un test de reconnaissante d’objets nouveaux ainsi qu’un RNA-Seq, respectivement (Chapitre III). Les coureurs ont démontré une mémoire spatiale de rappel à court-terme plus forte, tandis que les souris exposées aux interactions sociales ont eu une plus grande flexibilité cognitive à abandonner leurs anciens souvenirs. Étonnamment, l’analyse du RNA-Seq a permis d’identifier des différences claires dans l’expression des transcripts entre les coureurs de courte et longue distance, en plus des souris sociales (dans l’environnement complexe). iii Le second projet consiste à découvrir comment les cellules épendymaires acquièrent les propriétés des CSNs in vitro ou la multipotence suite aux lésions in vivo (Chapitre IV). Une analyse du RNA-Seq a révélé que le transforming growth factor-β1 (TGF-β1) agit comme un régulateur, en amont des changements significatifs suite à une lésion de la moelle épinière. Nous avons alors confirmé la présence de cette cytokine suite à la lésion et caractérisé son rôle sur la prolifération, différentiation, et survie des cellules initiatrices de neurosphères de la moelle épinière. Nos résultats suggèrent que TGF-β1 régule l’acquisition et l’expression des propriétés de cellules souches sur les cellules épendymaires provenant de la moelle épinière.
Resumo:
L’inflammation du système nerveux central (SNC), appelée neuroinflammation, est un aspect inséparable des maladies neurodégénératives chroniques comme la sclérose en plaques (SEP) et la maladie d’Alzheimer (MA). La caractérisation de la signature moléculaire spécifique à chaque population cellulaire dans des pathologies distinctes va aboutir à la compréhension et donc au contrôle de la neuroinflammation. Le présent ouvrage a pour but de mieux comprendre les mécanismes d’action de deux types cellulaires myéloïdes, la microglie et les neutrophiles, au cours des affections neuroinflammatoires du SNC. Ainsi, le premier objectif a été de comprendre le rôle des cytokines IL-36 dans la neuroinflammation établie au cours de l’encéphalomyélite auto-immune expérimentale (EAE). Dans une seconde partie, l’objectif a été d’explorer l’action du GPR84, un récepteur couplé à la protéine G spécifique à la microglie dans le SNC, lors de l’altération des fonctions cérébrales dans un modèle de souris transgénique de la MA. Nos résultats démontrent que la voie de signalisation IL-36/IL36R est augmentée dans trois modèles différents de l’EAE, mais ne contribue pas au développement ni à la progression de la pathologie. En utilisant l’approche de cytométrie en flux nous identifions les neutrophiles comme la source majeure de l’IL-36γ. De plus, nous démontrons que la microglie exprime l’IL-36R et sa stimulation par l’IL-36γ conduit à la production de cytokines pro-inflammatoires. Dans un second temps, nous caractérisons l’augmentation de l’expression du GPR84 par la microglie dans le modèle murin de la MA APP/PS1. Ainsi, le croisement de ces souris avec des souris déficientes en GPR84 diminue l’activation et le recrutement de la microglie autour des plaques d’amyloïde-β et accélère le déclin cognitif. Nos études impliquent le GPR84 comme un acteur important dans le maintien de l’homéostasie neuronale puisque son absence favorise la dégénérescence des dendrites dans le cerveau. Les résultats obtenus dans cette thèse apportent de nouveaux éléments qui peuvent contribuer au développement des thérapies qui ciblent les cellules myéloïdes dans diverses pathologies du SNC. Ces données ouvrent de nouvelles pistes pour élucider le rôle de l’IL-36γ dans des maladies neurodégénératives. Enfin, pour une première fois, nous présentons un modèle murin permettant d’identifier le(s) ligand(s) endogène(s) du GPR84, une cible thérapeutique potentielle pour la prévention et/ou le traitement de la MA.
Resumo:
L’échec des différents essais cliniques souligne la nécessité de développer des nouvelles thérapies pour la maladie d’Alzheimer (MA), la cause la plus commune de démence. Les microARNs (miARNs) sont les ARNs non-codants les plus étudiés et ils jouent un rôle important dans la modulation de l’expression des gènes et de multiples voies de signalisation. Des études antérieures, dont celles de mon laboratoire d’accueil, ont permis de développer l’hypothèse que certains membres de la famille miR-15/107 (c.-à-d. miR-15ab, miR-16, miR-195, miR-424, and miR-497) pourraient être utilisés comme agents thérapeutiques dans MA. En effet, cette famille avait le potentiel de réguler de multiples gènes associés à MA, tels que la protéine précurseur de l’amyloïde (APP), la β-secrétase (BACE1), et la protéine Tau. Tel que démontré dans ce projet de thèse, j’ai choisi miR-16 comme cible thérapeutique potentielle pour MA parmi tous les membres de la famille. L’essai luciférase dans ce projet confirme que miR-16 peut réguler simultanément APP et BACE1, directement par une interaction avec la région non-codante en 3’ de l’ARNm). Notamment, nous observons aussi une réduction de la production des peptides amyloïdes et de la phosphorylation de Tau après une augmentation de miR-16 en cellule. J’ai ensuite validé mes résultats in vivo dans la souris en utilisant une méthode de livraison de miR-16 via une pompe osmotique implanté dans le cerveau. Dans ce cas, l’expression des protéines d’intérêts (APP, BACE1, Tau) a été mesurée par immunobuvardage et PCR à temps réel. Après validation, ces résultats ont été complémentés par une étude protéomique (iTRAQ) du tronc cérébral et de l’hippocampe, deux régions associées à la maladie. Ces données m’ont permis d’identifier d’autres protéines régulées par miR-16 in vivo, incluant α-Synucléine, Transferrine receptor1, et SRm300. Une autre observation intéressante : les voies régulées par miR-16 in vivo sont directement en lien avec le stress oxydatif et la neurodégénération. En résumé, ce travail démontre l’efficacité et la faisabilité d’utiliser un miARN comme outil thérapeutique pour la maladie d’Alzheimer. Ces résultats rentrent dans un cadre plus vaste de découvrir de nouvelles cibles pour MA, et en particulier la forme sporadique de la maladie qui représente plus de 95% de tous les cas. Évidemment, la découverte d’une molécule pouvant cibler simultanément les deux pathologies de la maladie (plaques amyloïdes et hyper phosphorylation de tau) est nouvelle et intéressante, et ce domaine de recherche ouvre la porte aux autres petits ARNs non-codants dans MA et les maladies neurodégénératives connexes.
Resumo:
La scoliose est la pathologie déformante du rachis la plus courante de l’adolescence. Dans 80 % des cas, elle est idiopathique, signifiant qu’aucune cause n’a été associée. Les scolioses idiopathiques répondent à un modèle multifactoriel incluant des facteurs génétiques, environnementaux, neurologiques, hormonaux, biomécaniques et de croissance squelettique. Comme hypothèse neurologique, une anomalie vestibulaire provoquerait une asymétrie d’activation des voies vestibulospinales et des muscles paravertébraux commandés par cette voie, engendrant la déformation scoliotique. Certains modèles animaux permettent de reproduire ce mécanisme. De plus, des anomalies liées au système vestibulaire, comme des troubles de l’équilibre, sont observées chez les patients avec une scoliose. La stimulation vestibulaire galvanique permet d’explorer le contrôle sensorimoteur de l’équilibre puisqu’elle permet d’altérer les afférences vestibulaires. L’objectif de cette thèse est d’explorer le contrôle sensorimoteur en évaluant la réaction posturale provoquée par cette stimulation chez les patients et les participants contrôle. Dans la première étude, les patients sont plus déstabilisés que les contrôles et il n’y a pas de lien entre l’ampleur de l’instabilité et la sévérité de la scoliose. Dans la deuxième étude, à l’aide d’un modèle neuromécanique, un poids plus grand aux signaux vestibulaires a été attribué aux patients. Dans la troisième étude, un problème sensorimoteur est également observé chez les jeunes adultes ayant une scoliose, excluant ainsi que le problème soit dû à la maturation du système nerveux. Dans une étude subséquente, des patients opérés pour réduire leur déformation du rachis, montrent également une réaction posturale de plus grande amplitude à la stimulation comparativement à des participants contrôle. Ces résultats suggèrent que l’anomalie sensorimotrice ne serait pas secondaire à la déformation. Finalement, un algorithme a été développé pour identifier les patients ayant un problème sensorimoteur. Les patients montrant un contrôle sensorimoteur anormal ont également une réponse vestibulomotrice plus grande et attribuent plus de poids aux informations vestibulaires. Globalement, les résultats de cette thèse montrent qu’un déficit sensorimoteur expliquerait l’apparition de la scoliose mais pas sa progression. Le dysfonctionnement sensorimoteur n’est pas présent chez tous les patients. L’algorithme permettant une classification de la performance sensorimotrice pourrait être utile pour de futures études cliniques.
Resumo:
Le corps humain est composé de plusieurs milliards de cellules neuronales, lesquelles ont un impact primordial sur les systèmes vitaux. En effet, le système nerveux, étant lui-même un système vital du corps humain, effectue de nombreuses fonctions afin de voir au bon fonctionnement des autres systèmes du corps, tels que le système cardiovasculaire, le système digestif, le système musculaire et bien d’autres. Plusieurs maladies neurodégénératives telles que l’Alzheimer et la maladie de Creutzfeldt-Jakob, affectent les cellules nerveuses du corps et occasionnent la perte de différentes fonctions causant une diminution du bien-être et pouvant mener à la mort. La hausse du nombre d’individus atteint de maladies neurodégénératives observée au fils des ans nous montre l’importance de comprendre les phénomènes moléculaires qui se produisent lors des mécanismes de dégénérescence axonale dans les neurones. Lors de ma maîtrise dans le laboratoire du professeur Richard Blouin, j’ai étudié l’impact d’une augmentation intracellulaire de calcium sur la protéine dual leucine zipper kinase (DLK) en utilisant un modèle cellulaire humain, les SH-SY5Y. J’ai pu démontrer que l’entrée de calcium dans la cellule avait un impact sur la quantité de protéine DLK présente dans celles-ci. En effet, j’ai pu observer une diminution de la quantité de DLK dans les cellules suite à une entrée de calcium, un phénomène exclusivement calcium-dépendant. À l’aide d’inhibiteurs pharmacologiques, j’ai pu montrer l’implication, des calpaïnes, des protéases calcium-dépendantes reconnues pour leur rôle dans la dégénérescence axonale. Les essais in vitro montrent que DLK est une cible spécifique des calpaïnes.
Resumo:
L’obésité est un facteur de risque lié à des problèmes physiques, émotionnels et comportementaux. Aujourd’hui, l’alimentation est composée d’un régime typiquement occidental «Western diet» qui est riche en acides gras saturés (AGS) et pauvre en acides gras polyinsaturés (AGPI) tel que les oméga-3 (N-3) et occasionnant un déséquilibre du ratio alimentaire N-6/N-3. Ce déséquilibre est une des causes de la prévalence des maladies mentales y compris celles des troubles de l'humeur et de l’anxiété. L’acide docosahexaénoïque (ADH, 22: 6 n-3) est l’acide gras (AG) le plus abondant dans le cerveau et son accumulation est particulièrement élevée pendant la période périnatale. Il joue un rôle important dans le développement neuronal et d'autres fonctions du cerveau tel l'apprentissage et la mémoire. Des perturbations de l’environnement périnatal peuvent influencer à très long terme l’avenir de la descendance en la rendant plus susceptible de développer des problèmes d’obésité dans un contexte nutritionnel riche. On ignore cependant si le déficit alimentaire chez la mère et particulièrement en ADH aura un impact sur la motivation alimentaire de la progéniture. L’objectif principal de cette thèse est d’étudier le rôle potentiel des N-3 sur la balance énergétique, la motivation alimentaire, la dépression et le niveau d’anxiété des descendants de souris mâles adultes assujetties à une alimentation riche en gras. Nos données ont démontré qu‘un régime maternel déficitaire en ADH durant la période périnatale incitait la descendance à fournir plus d’effort afin d’obtenir un aliment palatable. Ceci entraînerait un dérèglement de l’homéostasie énergétique en augmentant le gain de poids et en diminuant l’activité locomotrice tout en exacerbant le comportement de type anxieux dès que les souris sont exposées à un milieu obésogène. Les acides gras libres (AGL) sont des nutriments essentiels fonctionnant comme des molécules de signalisation dans le cerveau en ayant des récepteurs qui jouent un rôle important dans le contrôle du métabolisme énergétique. Parmi eux, on distingue un récepteur couplé à la protéine G (GPCR), le GPR120. Ce récepteur activé par les AGPI ω-3 intervient dans les mécanismes anti-inflammatoires et insulino-résistants via les N-3. Une mutation dans le gène GPR120 occasionnée par une réduction de l’activité de signalisation du gène est liée à l’obésité humaine. L'objectif premier de cette deuxième étude était d’évaluer l'impact de la stimulation pharmacologique de GPR120 dans le système nerveux central (SNC) sur l'alimentation, les dépenses d'énergie, le comportement de type anxieux et la récompense alimentaire. Nos résultats démontrent qu’une injection centrale aiguë d'agoniste GPR120 III réduit la prise alimentaire ad libitum et la motivation alimentaire pour un aliment riche en gras et en sucre; ainsi que les comportements de type anxieux. L’injection centrale chronique (21 jours) de ce même agoniste GPR120 III transmis par une pompe osmotique a démontré que les souris placées sous diète hypercalorique (HFD n’ont présenté aucune modification lors de la prise alimentaire ni de gain de poids mais qu’il y avait comparativement au groupe de véhicule, une réduction du comportement de type anxieux, que ce soit dans le labyrinthe en croix surélevé (LCS) ou dans le test à champ ouvert (OFT). L’ADH est reconnu pour ses propriétés anorexigènes au niveau central. De plus, la stimulation des récepteurs de GPR120 au niveau du cerveau avec un agoniste synthétique peut produire un effet intense intervenir sur le comportement lié à l'alimentation des rongeurs. Trouver une approche visant à contrôler à la fois la neuroinflammation, la récompense alimentaire et les troubles émotionnels aiderait assurément au traitement de l'obésité et du diabète de type 2.
Resumo:
À la fin du 19e siècle, Dr. Ramón y Cajal, un pionnier scientifique, a découvert les éléments cellulaires individuels, appelés neurones, composant le système nerveux. Il a également remarqué la complexité de ce système et a mentionné l’impossibilité de ces nouveaux neurones à être intégrés dans le système nerveux adulte. Une de ses citations reconnues : “Dans les centres adultes, les chemins nerveux sont fixes, terminés, immuables. Tout doit mourir, rien ne peut être régénérer” est représentative du dogme de l’époque (Ramón y Cajal 1928). D’importantes études effectuées dans les années 1960-1970 suggèrent un point de vue différent. Il a été démontré que les nouveaux neurones peuvent être générés à l’âge adulte, mais cette découverte a créé un scepticisme omniprésent au sein de la communauté scientifique. Il a fallu 30 ans pour que le concept de neurogenèse adulte soit largement accepté. Cette découverte, en plus de nombreuses avancées techniques, a ouvert la porte à de nouvelles cibles thérapeutiques potentielles pour les maladies neurodégénératives. Les cellules souches neurales (CSNs) adultes résident principalement dans deux niches du cerveau : la zone sous-ventriculaire des ventricules latéraux et le gyrus dentelé de l’hippocampe. En condition physiologique, le niveau de neurogenèse est relativement élevé dans la zone sous-ventriculaire contrairement à l’hippocampe où certaines étapes sont limitantes. En revanche, la moelle épinière est plutôt définie comme un environnement en quiescence. Une des principales questions qui a été soulevée suite à ces découvertes est : comment peut-on activer les CSNs adultes afin d’augmenter les niveaux de neurogenèse ? Dans l’hippocampe, la capacité de l’environnement enrichi (incluant la stimulation cognitive, l’exercice et les interactions sociales) à promouvoir la neurogenèse hippocampale a déjà été démontrée. La plasticité de cette région est importante, car elle peut jouer un rôle clé dans la récupération de déficits au niveau de la mémoire et l’apprentissage. Dans la moelle épinière, des études effectuées in vitro ont démontré que les cellules épendymaires situées autour du canal central ont des capacités d’auto-renouvellement et de multipotence (neurones, astrocytes, oligodendrocytes). Il est intéressant de noter qu’in vivo, suite à une lésion de la moelle épinière, les cellules épendymaires sont activées, peuvent s’auto-renouveller, mais peuvent seulement ii donner naissance à des cellules de type gliale (astrocytes et oligodendrocytes). Cette nouvelle fonction post-lésion démontre que la plasticité est encore possible dans un environnement en quiescence et peut être exploité afin de développer des stratégies de réparation endogènes dans la moelle épinière. Les CSNs adultes jouent un rôle important dans le maintien des fonctions physiologiques du cerveau sain et dans la réparation neuronale suite à une lésion. Cependant, il y a peu de données sur les mécanismes qui permettent l'activation des CSNs en quiescence permettant de maintenir ces fonctions. L'objectif général est d'élucider les mécanismes sous-jacents à l'activation des CSNs dans le système nerveux central adulte. Pour répondre à cet objectif, nous avons mis en place deux approches complémentaires chez les souris adultes : 1) L'activation des CSNs hippocampales par l'environnement enrichi (EE) et 2) l'activation des CSNs de la moelle épinière par la neuroinflammation suite à une lésion. De plus, 3) afin d’obtenir plus d’information sur les mécanismes moléculaires de ces modèles, nous utiliserons des approches transcriptomiques afin d’ouvrir de nouvelles perspectives. Le premier projet consiste à établir de nouveaux mécanismes cellulaires et moléculaires à travers lesquels l’environnement enrichi module la plasticité du cerveau adulte. Nous avons tout d’abord évalué la contribution de chacune des composantes de l’environnement enrichi à la neurogenèse hippocampale (Chapitre II). L’exercice volontaire promeut la neurogenèse, tandis que le contexte social augmente l’activation neuronale. Par la suite, nous avons déterminé l’effet de ces composantes sur les performances comportementales et sur le transcriptome à l’aide d’un labyrinthe radial à huit bras afin d’évaluer la mémoire spatiale et un test de reconnaissante d’objets nouveaux ainsi qu’un RNA-Seq, respectivement (Chapitre III). Les coureurs ont démontré une mémoire spatiale de rappel à court-terme plus forte, tandis que les souris exposées aux interactions sociales ont eu une plus grande flexibilité cognitive à abandonner leurs anciens souvenirs. Étonnamment, l’analyse du RNA-Seq a permis d’identifier des différences claires dans l’expression des transcripts entre les coureurs de courte et longue distance, en plus des souris sociales (dans l’environnement complexe). iii Le second projet consiste à découvrir comment les cellules épendymaires acquièrent les propriétés des CSNs in vitro ou la multipotence suite aux lésions in vivo (Chapitre IV). Une analyse du RNA-Seq a révélé que le transforming growth factor-β1 (TGF-β1) agit comme un régulateur, en amont des changements significatifs suite à une lésion de la moelle épinière. Nous avons alors confirmé la présence de cette cytokine suite à la lésion et caractérisé son rôle sur la prolifération, différentiation, et survie des cellules initiatrices de neurosphères de la moelle épinière. Nos résultats suggèrent que TGF-β1 régule l’acquisition et l’expression des propriétés de cellules souches sur les cellules épendymaires provenant de la moelle épinière.
Resumo:
La maladie de Hirschsprung est une affection congénitale de la motilité intestinale caractérisée par un segment aganglionnaire dans le côlon terminal. Un criblage génétique par mutation insertionnelle aléatoire chez la souris nous a permis d’identifier la lignée transgénique Spot dont les homozygotes souffrent de mégacôlon aganglionnaire. L’analyse d’intestins d’embryons mutants a révélé une baisse de prolifération et un délai de migration des cellules de la crête neurale entériques (CCNe) progénitrices dus à leur différenciation gliale précoce, entrainant un défaut de colonisation de l’intestin et une aganglionose du côlon. Le séquençage du génome Spot indique que le transgène s’est inséré à l’intérieur du locus K12-Nr2f1 sur le chromosome 13, une région dépourvue de gènes préalablement associés à la maladie, perturbant également une séquence non-codante très conservée dans l’évolution. K12 est un gène d’ARN long non codant (ARNlnc) et antisens du gène Nr2f1, lui-même impliqué dans la gliogénèse du système nerveux central. Le séquençage du transcriptome des CCN a montré une surexpression de Nr2f1 et des formes courtes de K12 chez Spot et des essais luciférase ont révélé l’activité répressive de l’élément conservé. Nous avons observé l’expression de K12 dans les CCNe et sa localisation subcellulaire dans des zones transcriptionnellement actives du noyau. Avec l’émergence des ARNlnc régulateurs, ces données nous permettent de pointer deux nouveaux gènes candidats associés à une différenciation gliale prématurée du SNE menant au mégacôlon aganglionnaire, en supposant que la régulation de Nr2f1 se fait par son antisens, K12.
Resumo:
La maladie de Hirschsprung est une affection congénitale de la motilité intestinale caractérisée par un segment aganglionnaire dans le côlon terminal. Un criblage génétique par mutation insertionnelle aléatoire chez la souris nous a permis d’identifier la lignée transgénique Spot dont les homozygotes souffrent de mégacôlon aganglionnaire. L’analyse d’intestins d’embryons mutants a révélé une baisse de prolifération et un délai de migration des cellules de la crête neurale entériques (CCNe) progénitrices dus à leur différenciation gliale précoce, entrainant un défaut de colonisation de l’intestin et une aganglionose du côlon. Le séquençage du génome Spot indique que le transgène s’est inséré à l’intérieur du locus K12-Nr2f1 sur le chromosome 13, une région dépourvue de gènes préalablement associés à la maladie, perturbant également une séquence non-codante très conservée dans l’évolution. K12 est un gène d’ARN long non codant (ARNlnc) et antisens du gène Nr2f1, lui-même impliqué dans la gliogénèse du système nerveux central. Le séquençage du transcriptome des CCN a montré une surexpression de Nr2f1 et des formes courtes de K12 chez Spot et des essais luciférase ont révélé l’activité répressive de l’élément conservé. Nous avons observé l’expression de K12 dans les CCNe et sa localisation subcellulaire dans des zones transcriptionnellement actives du noyau. Avec l’émergence des ARNlnc régulateurs, ces données nous permettent de pointer deux nouveaux gènes candidats associés à une différenciation gliale prématurée du SNE menant au mégacôlon aganglionnaire, en supposant que la régulation de Nr2f1 se fait par son antisens, K12.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.