956 resultados para Sucrose hydrolysis
Resumo:
The thermophilic fungus Thermoascus aurantiacus 179-5 produced large quantities of a glucosidase which preferentially hydrolyzed maltose over starch. Enzyme production was high in submerged fermentation, with a maximal activity of 30 U/ml after 336 h of fermentation. In solid-state fermentation, the activity of the enzyme was 22 U/ml at 144 h in medium containing wheat bran and 5.8 U/ml at 48 h when cassava pulp was used as the culture medium. The enzyme was specific for maltose, very slowly hydrolyzed starch, dextrins (2-7G) and the synthetic substrate (α-PNPG), and did not hydrolyze sucrose. These properties suggest that the enzyme is a type II α-glucosidase. The optimum temperature of the enzyme was 70°C. In addition, the enzyme was highly thermostable (100% stability for 10 h at 60°C and a half-life of 15 min at 80°C), and stable within a wide pH range. Copyright © 2006, The Microbiological Society of Korea.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of this study was to evaluate the influence of diltiazem in combination with a sucrose-rich diet on gingival alterations in rats. One hundred and twenty male Holtzman rats were randomly assigned to 10 groups (n = 12), being 2 control groups treated with saline and 8 test groups treated with diltiazem in daily doses of 5, 25, 50 and 100 mg/kg during 40 or 60 days. Afterwards, the mandibles were removed for macroscopic, histologic and histometric analyses of the buccal gingiva of the mandibular right first molar. No macroscopic characteristic of gingival overgrowth was observed in any of the groups. The microscopic analysis showed characteristics of normality with inflammatory cells only adjacent to the crevicular epithelium in all groups for both periods. The histometric analysis showed significant differences only for the epithelial tissue area in the 40-day period (Kruskal-Wallis; P = 0.032). Comparing the periods, significant differences regarding the connective and epithelial tissue areas were observed only in the group treated with a 25 mg/kg dose (Mann-Whitney; P = 0.004 and P = 0.007, respectively). Oral administration of diltiazem in combination with a sucrose-rich diet did not induce gingival alterations in rats. © 2009 Sociedade Brasileira de Pesquisa Odontológica.
Resumo:
Introduction: Excessive consumption of sugar-sweetened beverage is positively related to overweight. Despite the epidemic of childhood obesity, body mass can have a positive or negative effect on bone health. Material and methods: Wistar rats 8 weeks olds were randomly assigned to consume water (Control group, n = 10), sucrose 30% (HS group, n = 10) and water + sucrose 30% (WHS group, n = 14) for 8 weeks. All animals received standard laboratory chow ad libitum. Femur measurements included microhardness, bone mineral density (BMD) by DXA, mechanical compression test and microcomputed tomography (microCT) analysis. Results: We observed significant difference in final body weight in HS and WHS groups, significant increase in triacylglycerol/fructosamine in HS and WHS groups, significantly high BMD in WHS group, increased periosteal/endosteal cortical microhardness in WHS group. Compared with control, microCT parameters evidenced lower amount of connected trabecular bone, decreased bone volume, lower trabecular number with high trabecular separation in distal epiphysis in WHS animals. Conclusion: High-sucrose consumption causes obesity induced by a liquid diet with negative effects on cancellous bone.
Resumo:
Mass transfer was evaluated during osmotic dehydration of pineapple in solutions with until four components aiming to investigate the solutes concentration influence on impregnation. In the first step, the experimental trials for optimization of solution concentration were based on 23 factorial design. In the second step, effective diffusion coefficients were determined. Equations representing the influence of the concentration of sucrose, calcium lactate, and ascorbic acid in osmotic solutions on water loss and gains of sucrose, calcium, and vitamin C were found. Results showed that both calcium lactate and sucrose concentration affected calcium and sucrose gain. On the other hand, only vitamin C gain was significantly affected by the ascorbic acid concentration in the studied concentration range. However, when comparing diffusivities in pineapple immersed in sucrose solutions, with and without calcium lactate, with and without ascorbic acid, it was possible to verify that diffusivities of water, sugar, and calcium increased in presence of ascorbic acid in solution. Calcium in solution diminished the water and sucrose diffusivities. High calcium and vitamin C contents were obtained in 1 h immersion in the solutions studied. © 2013 Springer Science+Business Media New York.
Resumo:
Plasma treatments were applied on the surface of postconsumer polyethylene terephthalate (PET) bottles to increase their wettability and hasten the subsequent hydrolysis process. Sixty-four treatments were tested by varying plasma composition (oxygen and air), power (25-130 W), pressure (50-200 mTorr), and time (1 and 5 min). The best treatment was the one applied in air plasma at 130 W and 50 mTorr for 5 min, as it provided the lowest contact angle, 9.4°. Samples of PET before and after the optimized plasma condition were subjected to hydrolysis at 205°C. Although the treatment changed only a thin surface layer, its influence was evident up to relatively high conversion rates, as the treated samples presented more than 40% higher conversion rates than the untreated ones after 2 h of reaction. Infrared spectroscopy showed that the terephthalic acid obtained from 99% of depolymerization was similar to the commercial product used in PET synthesis. © 2012 Wiley Periodicals, Inc.
Resumo:
Currently, there is worldwide interest in the technological use of agro-industrial residues as a renewable source of food and biofuels. Lignocellulosic materials (LCMs) are a rich source of cellulose and hemicellulose. Hemicellulose is rich in xylan, a polysaccharide used to develop technology for producing alcohol, xylose, xylitol and xylo-oligosaccharides (XOSs). The XOSs are unusual oligosaccharides whose main constituent is xylose linked by β 1-4 bonds. The XOS applications described in this paper highlight that they are considered soluble dietary fibers that have prebiotic activity, favoring the improvement of bowel functions and immune function and having antimicrobial and other health benefits. These effects open a new perspective on potential applications for animal production and human consumption. The raw materials that are rich in hemicellulose include sugar cane bagasse, corncobs, rice husks, olive pits, barley straw, tobacco stalk, cotton stalk, sunflower stalk and wheat straw. The XOS-yielding treatments that have been studied include acid hydrolysis, alkaline hydrolysis, auto-hydrolysis and enzymatic hydrolysis, but the breaking of bonds present in these compounds is relatively difficult and costly, thus limiting the production of XOS. To obviate this limitation, a thorough evaluation of the most convenient methods and the opportunities for innovation in this area is needed. Another challenge is the screening and taxonomy of microorganisms that produce the xylanolytic complex and enzymes and reaction mechanisms involved. Among the standing out microorganisms involved in lignocellulose degradation are Trichoderma harzianum, Cellulosimicrobium cellulans, Penicillium janczewskii, Penicillium echinulatu, Trichoderma reesei and Aspergillus awamori. The enzyme complex predominantly comprises endoxylanase and enzymes that remove hemicellulose side groups such as the acetyl group. The complex has low β-xylosidase activities because β-xylosidase stimulates the production of xylose instead of XOS; xylose, in turn, inhibits the enzymes that produce XOS. The enzymatic conversion of xylan in XOS is the preferred route for the food industries because of problems associated with chemical technologies (e.g., acid hydrolysis) due to the release of toxic and undesired products, such as furfural. The improvement of the bioprocess for XOS production and its benefits for several applications are discussed in this study. © 2012 Elsevier Ltd.
Resumo:
An extracellular ethanol-tolerant β-glucosidase from Sporidiobolus pararoseus was purified to homogeneity and characterized, and its potential use for the enhancement of wine aroma was investigated. The crude enzymatic extract was purified in four steps (concentration, dialysis, ultrafiltration, and chromatography) with a yield of around 40 % for total activity. The purified enzyme (designated Sp-βgl-P) showed a specific activity of approximately 20.0 U/mg, an estimated molecular mass of 63 kDa after sodium dodecyl sulfate polyacrylamide gel electrophoresis, and isoelectric point of 5.0 by isoelectric focusing. Sp-βgl-P has optimal activity at pH 4.0 and at 55 °C. It was stable in a broad pH range at low temperatures and it was tolerant to ethanol and glucose, indicating suitable properties for winemaking. The hydrolysis of glycosidic terpenes was analyzed by adding Sp-βgl-P directly to the wines. The released terpene compounds were evaluated by gas chromatography/mass spectrometry. The enzymatic treatment significantly increased the amount of free terpenes, suggesting that this enzyme could potentially be applicable in wine aroma improvement. © 2013 Springer Science+Business Media New York.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)