965 resultados para Subtropical grasslands


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-term changes In the crustacean zooplankton community (calanoid and cyclopoid copepods and cladocerans) were studied in Lake Donghu, a shallow and eutrophic Chinese lake. This lake had been earlier stocked with two pump Alter-feeding Ashes, silver carp (Hypopthalmichthys molitrix) and bighead carp (Aristichthys nobilis). During the 1950s and the mid-1980s, the ratio of copepods to cladocerans was relatively stable but showed a general increase thereafter. From the early-1980s to the 1990s, calanoid/cyclopoid ratios decreased obviously. In the 1990s, Cyclops vicinus, Diaphanosoma brachyurum, and Moina micrura were dominant the abundance of C. vicinus and M. micrura increased significantly; and D, brachyurum showed a substantial decrease. The study shows that under extremely high pressure of Ash predation, the species which could recover rapidly from fish predation would be the most likely to survive and increase their numbers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In contrast to the relatively well documented impact of particulate-feeding fish on zooplankton communities, little attention has been devoted to the impact of filter-feeding fish. Filter-feeding silver and bighead carp are the most intensively cultured fish species in Asia and comprise much of the production of Chinese aquaculture. However, little information is known about the impact of either fish on the zooplankton community. Long-term changes in the Copepoda community (1957-1996) were studied at two sampling stations of a subtropical Chinese lake (Lake Donghu) dominated by silver and bighead carp. For both calanoids and cyclopoids, the littoral station (I) was much more resource profitable than the pelagic station (II). There has been a tremendous increase in the annual fish catch over the past 30 years due to the increased stocking with fingerlings of the two carp species. There was a notably higher fish density at Station I than at Station II. Cyclopoid abundance was notably higher at Station I than at Station II during the 1950s to the 1980s, while the reverse became true in the 1990s. This is probably because when fish abundance increased to an extremely high level, the impact of fish predation on the cyclopoids became more important than that of food resources at the littoral station. At both stations, cyclopoid abundance was relatively low in spite of the presence of abundant prey. Similarly, calanoid density did not differ significantly between the two stations in the 1950s and 1960s, but was significantly lower at Station I than at Station II during the 1980s and 1990s. Such changes are attributed to the gradient of fish predation between the stations and an increasing predation pressure by the fish. The increased fish predation also correlated with a shift in summer-dominant calanoids from larger species to smaller ones. In conclusion, the predaceous cyclopoids are affected by fish predation to a much lesser extent than the herbivorous calanoids, and therefore increased predation by filter-feeding fish results in a definite increase in the cyclopoid/calanoid ratio. Predation by filter-feeding fish has been a driving force in shaping the copepod community structure of Lake Donghu during the past decades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The changes of L. kindti density from 1957 to 1996 were studied in a shallow, eutrophic Chinese lake, Lake Donghu. Despite the fact that the fish yield of planktivorous fish (silver carp and bighead carp) has increased steadily, the population density of L. kindti has also increased since 1957 and peaked in 1982/1983, The increase of both fish and L. kindti densities during this period may have benefitted from a considerable increase in the densities of their zooplankton prey. and fish predation on L. kindti might have been minor. As the fish yield increased further, their predation began to suppress most zooplankton prey including L. kindti. The largely increased fish predation on L. kindti is also evidenced by the remarkable decline of their body length after 1984. The density of L. kindti was significantly higher at the pelagic station (II) than at the littoral station (I), although for L. kindti, the littoral zone was significantly more resource profitable than the pelagic zone. The gradient of fish predation (more fish in the littoral zone) is the most likely explanation, since L. kindti is reported to be a preferred prey for many planktivorous fishes. The maximum density of L. kindti was 1.78 ind./I (on Aug. 17, 1984) at Station I and 1.55 ind./I (on Sep. 13, 1985) at Station II, respectively, which are close to those in several other eutrophic lakes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The seasonal dynamics in the nutrient concentrations, chlorophyll-a amount (Chl-a), total algal volume (CV), Chl-a/CV ratio, seston structure were studied at two sampling stations in a shallow, highly eutrophicated subtropic lake (the Guozheng Hu area of the East Lake) on the plain of the middle basin of the Chang Jiang (the Yangtze River) of China. The lake ecosystem of the Guozheng Hu area is dominated by two planktivorous fishes (silver carp and bighead carp), phytoplankton and zooplankton. Macrophytes are extremely scarce in this area. Concentrations of the total dissolved nitrogen and phosphorus in the Guozheng Hu area in 1990 were very high. Fish yield, of which, more than 90 % was composed of silver carp and bighead carp in the Guozheng Hu area was very high (ca. 1140 kg/ha or 45.6 g/m3 in 1990). Grazing pressure by the fishes on the plankton community is considered to be rather strong. The annual average biomass of zooplankton was ca. 1/3 - 1/2 that of phytoplankton. On the average, dry matter in the living plankton only constituted ca. 3-7 % of the total dry seston, and plankton carbon only constituted ca. 5 - 10 % of the seston carbon. The present results indicate that, in the Guozheng Hu area of the East Lake, of the organic part of the seston, detritus is quantitatively an important constituent, while living plankton is only a very small component.