922 resultados para Substrate Specificity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human cytochrome P450 (P450) 2D6 is an important enzyme involved in the metabolism of drugs, many of which are amines or contain other basic nitrogen atoms. Asp301 has generally been considered to be involved in electrostatic docking with the basic substrates, on the basis of previous modeling studies and site-directed mutagenesis. Substitution of Glu216 with a residue other than Asp strongly attenuated the binding of quinidine, bufuralol, and several other P450 2D6 ligands. Catalytic activity with the substrates bufuralol and 4-methoxyphenethylamine was strongly inhibited by neutral or basic mutations at Glu216 (>95%), to the same extent as the substitution of Asn at Asp301. Unlike the Asp301 mutants, the Gln216 mutant (E216Q) retained 40% enzyme efficiency with the substrate spirosulfonamide, devoid of basic nitrogen, suggesting that the substitutions at Glu216 affect binding of amine substrates more than other catalytic steps. Attempts to induce catalytic specificity toward new substrates by substitutions at Asp301 and Glu216 were unsuccessful. Collectively, the results provide evidence for electrostatic interaction of amine substrates with Glu216, and we propose that both of these acidic residues plus at least another residue(s) is (are) involved in binding the repertoire of P450 2D6 ligands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human SULT1A1 is primarily responsible for sulfonation of xenobiotics, including the activation of promutagens, and it has been implicated in several forms of cancer. Human SULT1A3 has been shown to be the major sulfotransferase that sulfonates dopamine. These two enzymes shares 93% amino acid sequence identity and have distinct but overlapping substrate preferences. The resolution of the crystal structures of these two enzymes has enabled us to elucidate the mechanisms controlling their substrate preferences and inhibition. The presence of two p-nitrophenol (pNP) molecules in the crystal structure of SULT1A1 was postulated to explain cooperativity at low and inhibition at high substrate concentrations, respectively. In SULT1A1, substrate inhibition occurs with pNP as the substrate but not with dopamine. For SULT1A3, substrate inhibition is found for dopamine but not with pNP. We investigated how substrate inhibition occurs in these two enzymes using molecular modeling, site-directed mutagenesis, and kinetic analysis. The results show that residue Phe-247 of SULT1A1, which interacts with both p-nitrophenol molecules in the active site, is important for substrate inhibition. Mutation of phenylalanine to leucine at this position in SULT1A1 results in substrate inhibition by dopamine. We also propose, based on modeling and kinetic studies, that substrate inhibition by dopamine in SULT1A3 is caused by binding of two dopamine molecules in the active site. © 2004 by The American Society for Biochemistry and Molecular Biology, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acetohydroxyacid synthase (AHAS, EC 2.2.1.6) is the target for the sulfonylurea herbicides, which act as potent inhibitors of the enzyme. Chlorsulfuron (marketed as Glean) and sulforneturon methyl (marketed as Oust) are two commercially important members of this family of herbicides. Here we report crystal structures of yeast AHAS in complex with chlorsulfuron (at a resolution of 2.19 Angstrom), sulforneturon methyl (2.34 Angstrom), and two other sulfonylureas, metsulfuron methyl (2.29 Angstrom) and tribenuron methyl (2.58 Angstrom). The structures observed suggest why these inhibitors have different potencies and provide clues about the differential effects of mutations in the active site tunnel on various inhibitors. In all of the structures, the thiamin diphosphate cofactor is fragmented, possibly as the result of inhibitor binding. In addition to thiamin diphosphate, AHAS requires FAD for activity. Recently, it has been reported that reduction of FAD can occur as a minor side reaction due to reaction with the carbanion/enamine of the hydroxyethyl-ThDP intermediate that is formed midway through the catalytic cycle. Here we report that the isoalloxazine ring has a bent conformation that would account for its ability to accept electrons from the hydroxyethyl intermediate. Most sequence and mutation data suggest that yeast AHAS is a high-quality model for the plant enzyme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predatory mites (Acari: Mesostigmata) on tree trunks without significant epiphytic growth in a subtropical rainforest in Eastern Australia were assessed for habitat specificity (i.e. whether they are tree trunk specialists or occupying other habitats) and the influence of host tree and bark structure on their abundance, species richness and species composition. The trunks of nine tree species from eight plant families representing smooth, intermediate and rough bark textures were sampled using a knockdown insecticide spray. In total, 12 species or morphospecies of Mesostigmata (excluding Uropodina sensu stricto) were collected, most of which are undescribed. Comparison with collections from other habitats indicates that epicorticolous Mesostigmata are mainly represented by suspended soil dwellers (six species), secondarily by generalists (four species) and a bark specialist (one species). A typical ground-dwelling species was also found but was represented only by a single individual. In terms of abundance, 50.5% of individuals were suspended soil dwellers, 40.7% bark specialists, and 8.3% generalists. Host species and bark roughness had no significant effect on abundance or species richness. Furthermore, there was no clear effect on species composition. The distribution of the most frequently encountered species suggests that most mesostigmatid mites living on bark use many or most rainforest tree species, independent of bark roughness. These findings support the hypothesis that some epicorticolous Mesostigmata use tree trunks as 'highways' for dispersing between habitat patches, while others use it as a permanent habitat.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytochrome P450 monooxygenases, one of the most important classes of heme-thiolate proteins, have attracted considerable interest in the biochemical community because of its catalytic versatility, substrate diversity and great number in the superfamily. Although P450s are capable of catalyzing numerous difficult oxidation reactions, the relatively low stability, low turnover rates and the need of electron-donating cofactors have limited their practical biotechnological and pharmaceutical applications as isolated enzymes. The goal of this study is to tailor such heme-thiolate proteins into efficient biocatalysts with high specificity and selectivity by protein engineering and to better understand the structure-function relationship in cytochromes P450. In the effort to engineer P450cam, the prototype member of the P450 superfamily, into an efficient peroxygenase that utilizes hydrogen peroxide via the “peroxide-shunt” pathway, site-directed mutagenesis has been used to elucidate the critical roles of hydrophobic residues in the active site. Various biophysical, biochemical and spectroscopic techniques have been utilized to investigate the wild-type and mutant proteins. Three important P450cam variants were obtained showing distinct structural and functional features. In P450camV247H mutant, which exhibited almost identical spectral properties with the wild-type, it is demonstrated that a single amino acid switch turned the monooxygenase into an efficient preoxidase by increasing the peroxidase activity nearly one thousand folds. In order to tune the distal pocket of P450cam with polar residues, Leu 246 was replaced with a basic residue, lysine, resulting in a mutant with spectral features identical to P420, the inactive species of P450. But this inactive-species-like mutant showed catalytic activities without the facilitation of any cofactors. By substituting Gly 248 with a histidine, a novel Cys-Fe-His ligation set was obtained in P450cam which represented the very rare case of His ligation in heme-thiolate proteins. In addition to serving as a convenient model for hemoprotein structural studies, the G248H mutant also provided evidence about the nature of the axial ligand in cytochrome P420 and other engineered hemoproteins with thiolate ligations. Furthermore, attempts have been made to replace the proximal ligand in sperm whale myoglobin to construct a heme-thiolate protein model by mimicking the protein environment of cytochrome P450cam and chloroperoxidase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytochrome P450 monooxygenases, one of the most important classes of heme-thiolate proteins, have attracted considerable interest in the biochemical community because of its catalytic versatility, substrate diversity and great number in the superfamily. Although P450s are capable of catalyzing numerous difficult oxidation reactions, the relatively low stability, low turnover rates and the need of electron-donating cofactors have limited their practical biotechnological and pharmaceutical applications as isolated enzymes. The goal of this study is to tailor such heme-thiolate proteins into efficient biocatalysts with high specificity and selectivity by protein engineering and to better understand the structure-function relationship in cytochromes P450. In the effort to engineer P450cam, the prototype member of the P450 superfamily, into an efficient peroxygenase that utilizes hydrogen peroxide via the “peroxide-shunt” pathway, site-directed mutagenesis has been used to elucidate the critical roles of hydrophobic residues in the active site. Various biophysical, biochemical and spectroscopic techniques have been utilized to investigate the wild-type and mutant proteins. Three important P450cam variants were obtained showing distinct structural and functional features. In P450camV247H mutant, which exhibited almost identical spectral properties with the wild-type, it is demonstrated that a single amino acid switch turned the monooxygenase into an efficient preoxidase by increasing the peroxidase activity nearly one thousand folds. In order to tune the distal pocket of P450cam with polar residues, Leu 246 was replaced with a basic residue, lysine, resulting in a mutant with spectral features identical to P420, the inactive species of P450. But this inactive-species-like mutant showed catalytic activities without the facilitation of any cofactors. By substituting Gly 248 with a histidine, a novel Cys-Fe-His ligation set was obtained in P450cam which represented the very rare case of His ligation in heme-thiolate proteins. In addition to serving as a convenient model for hemoprotein structural studies, the G248H mutant also provided evidence about the nature of the axial ligand in cytochrome P420 and other engineered hemoproteins with thiolate ligations. Furthermore, attempts have been made to replace the proximal ligand in sperm whale myoglobin to construct a heme-thiolate protein model by mimicking the protein environment of cytochrome P450cam and chloroperoxidase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A miniaturised gas analyser is described and evaluated based on the use of a substrate-integrated hollow waveguide (iHWG) coupled to a microsized near-infrared spectrophotometer comprising a linear variable filter and an array of InGaAs detectors. This gas sensing system was applied to analyse surrogate samples of natural fuel gas containing methane, ethane, propane and butane, quantified by using multivariate regression models based on partial least square (PLS) algorithms and Savitzky-Golay 1(st) derivative data preprocessing. The external validation of the obtained models reveals root mean square errors of prediction of 0.37, 0.36, 0.67 and 0.37% (v/v), for methane, ethane, propane and butane, respectively. The developed sensing system provides particularly rapid response times upon composition changes of the gaseous sample (approximately 2 s) due the minute volume of the iHWG-based measurement cell. The sensing system developed in this study is fully portable with a hand-held sized analyser footprint, and thus ideally suited for field analysis. Last but not least, the obtained results corroborate the potential of NIR-iHWG analysers for monitoring the quality of natural gas and petrochemical gaseous products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ethanol oxidation reaction (EOR) is investigated on Pt/Au(hkl) electrodes. The Au(hkl) single crystals used belong to the [n(111)x(110)] family of planes. Pt is deposited following the galvanic exchange of a previously deposited Cu monolayer using a Pt(2+) solution. Deposition is not epitaxial and the defects on the underlying Au(hkl) substrates are partially transferred to the Pt films. Moreover, an additional (100)-step-like defect is formed, probably as a result of the strain resulting from the Pt and Au lattice mismatch. Regarding the EOR, both vicinal Pt/Au(hkl) surfaces exhibit a behavior that differs from that expected for stepped Pt; for instance, the smaller the step density on the underlying Au substrate, the greater the ability to break the CC bond in the ethanol molecule, as determined by in situ Fourier transform infrared spectroscopy measurements. Also, we found that the acetic acid production is favored as the terrace width decreases, thus reflecting the inefficiency of the surface array to cleave the ethanol molecule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human Neks are a conserved protein kinase family related to cell cycle progression and cell division and are considered potential drug targets for the treatment of cancer and other pathologies. We screened the activation loop mutant kinases hNek1 and hNek2, wild-type hNek7, and five hNek6 variants in different activation/phosphorylation statesand compared them against 85 compounds using thermal shift denaturation. We identified three compounds with significant Tm shifts: JNK Inhibitor II for hNek1(Δ262-1258)-(T162A), Isogranulatimide for hNek6(S206A), andGSK-3 Inhibitor XIII for hNek7wt. Each one of these compounds was also validated by reducing the kinases activity by at least 25%. The binding sites for these compounds were identified by in silico docking at the ATP-binding site of the respective hNeks. Potential inhibitors were first screened by thermal shift assays, had their efficiency tested by a kinase assay, and were finally analyzed by molecular docking. Our findings corroborate the idea of ATP-competitive inhibition for hNek1 and hNek6 and suggest a novel non-competitive inhibition for hNek7 in regard to GSK-3 Inhibitor XIII. Our results demonstrate that our approach is useful for finding promising general and specific hNekscandidate inhibitors, which may also function as scaffolds to design more potent and selective inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To compare intraocular pressure (IOP) rise in normal individuals and primary open-angle glaucoma patients and the safety and efficacy of ibopamine eye drops in different concentrations as a provocative test for glaucoma. METHODS: Glaucoma patients underwent (same eye) the ibopamine provocative test with two concentrations, 1% and 2%, in a random sequence at least 3 weeks apart, but not more than 3 months. The normal individuals were randomly submitted to one of the concentrations of ibopamine (1% and 2%). The test was considered positive if there was an IOP rise greater than 3 or 4 mmHg at 30 or 45 minutes to test which subset of the test has the best sensitivity (Se)/specificity (Sp). RESULTS: There was no statistically significant difference in any of the IOP measurements, comparing 1% with 2% ibopamine. The IOP was significantly higher at 30 and 45 minutes with both concentrations (p<0.001). The best sensitivity/specificity ratio was achieved with the cutoff point set as greater than 3 mmHg at 45 minutes with 2% ibopamine (area under the ROC curve: 0.864, Se: 84.6%; Sp:73.3%). All patients described a slight burning after ibopamine's instillation. CONCLUSION: 2% ibopamine is recommended as a provocative test for glaucoma. Because both concentrations have similar ability to rise IOP, 1% ibopamine may be used to treat ocular hypotony.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To evaluate the sensitivity and specificity of machine learning classifiers (MLCs) for glaucoma diagnosis using Spectral Domain OCT (SD-OCT) and standard automated perimetry (SAP). METHODS: Observational cross-sectional study. Sixty two glaucoma patients and 48 healthy individuals were included. All patients underwent a complete ophthalmologic examination, achromatic standard automated perimetry (SAP) and retinal nerve fiber layer (RNFL) imaging with SD-OCT (Cirrus HD-OCT; Carl Zeiss Meditec Inc., Dublin, California). Receiver operating characteristic (ROC) curves were obtained for all SD-OCT parameters and global indices of SAP. Subsequently, the following MLCs were tested using parameters from the SD-OCT and SAP: Bagging (BAG), Naive-Bayes (NB), Multilayer Perceptron (MLP), Radial Basis Function (RBF), Random Forest (RAN), Ensemble Selection (ENS), Classification Tree (CTREE), Ada Boost M1(ADA),Support Vector Machine Linear (SVML) and Support Vector Machine Gaussian (SVMG). Areas under the receiver operating characteristic curves (aROC) obtained for isolated SAP and OCT parameters were compared with MLCs using OCT+SAP data. RESULTS: Combining OCT and SAP data, MLCs' aROCs varied from 0.777(CTREE) to 0.946 (RAN).The best OCT+SAP aROC obtained with RAN (0.946) was significantly larger the best single OCT parameter (p<0.05), but was not significantly different from the aROC obtained with the best single SAP parameter (p=0.19). CONCLUSION: Machine learning classifiers trained on OCT and SAP data can successfully discriminate between healthy and glaucomatous eyes. The combination of OCT and SAP measurements improved the diagnostic accuracy compared with OCT data alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of interface effects for organic devices has long been recognized, but getting detailed knowledge of the extent of such effects remains a major challenge because of the difficulty in distinguishing from bulk effects. This paper addresses the interface effects on the emission efficiency of poly(p-phenylene vinylene) (PPV), by producing layer-by-layer (LBL) films of PPV alternated with dodecylbenzenesulfonate. Films with thickness varying from similar to 15 to 225 nm had the structural defects controlled empirically by converting the films at two temperatures, 110 and 230 degrees C, while the optical properties were characterized by using optical absorption, photoluminescence (PL), and photoluminescence excitation spectra. Blueshifts in the absorption and PL spectra for LBL films with less than 25 bilayers (<40-50 nm) pointed to a larger number of PPV segments with low conjugation degree, regardless of the conversion temperature. For these thin films, the mean free-path for diffusion of photoexcited carriers decreased, and energy transfer may have been hampered owing to the low mobility of the excited carriers. The emission efficiency was then found to depend on the concentration of structural defects, i.e., on the conversion temperature. For thick films with more than 25 bilayers, on the other hand, the PL signal did not depend on the PPV conversion temperature. We also checked that the interface effects were not caused by waveguiding properties of the excited light. Overall, the electronic states at the interface were more localized, and this applied to film thickness of up to 40-50 nm. Because this is a typical film thickness in devices, the implication from the findings here is that interface phenomena should be a primary concern for the design of any organic device. (C) 2011 American Institute of Physics. [doi:10.1063/1.3622143]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photoluminescence (PL) technique as a function of temperature and excitation intensity was used to study the optical properties of multiquantum wells (MQWs) of GaAs/Al(x)Ga(1-x)As grown by molecular beam epitaxy on GaAs substrates oriented in the [100], [311]A, and [311]B directions. The asymmetry presented by the PL spectra of the MQWs with an apparent exponential tail in the lower-energy side and the unusual behavior of the PL peak energy versus temperature (blueshift) at low temperatures are explained by the exciton localization in the confinement potential fluctuations of the heterostructures. The PL peak energy dependence with temperature was fitted by the expression proposed by Passler [Phys. Status Solidi B 200, 155 (1997)] by subtracting the term sigma(2)(E)/k(B)T, which considers the presence of potential fluctuations. It can be verified from the PL line shape, the full width at half maximum of PL spectra, the sigma(E) values obtained from the adjustment of experimental points, and the blueshift maximum values that the samples grown in the [311]A/B directions have higher potential fluctuation amplitude than the sample grown in the [100] direction. This indicates a higher degree of the superficial corrugations for the MQWs grown in the [311] direction. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brewer`s spent grain components (cellulose, hemicellulose and lignin) were fractionated in a two-step chemical pretreatment process using dilute sulfuric acid and sodium hydroxide solutions. The cellulose pulp produced was hydrolyzed with a cellulolytic complex, Celluclast 1.5 L, at 45 degrees C to convert the cellulose into glucose. Several conditions were examined: agitation speed (100, 150 and 200 rpm), enzyme loading (5, 25 and 45 FPU/g substrate), and substrate concentration (2, 5 and 8% w/v), according to a 2(3) full factorial design aiming to maximize the glucose yield. The obtained results were interpreted by analysis of variance and response surface methodology. The optimal conditions for enzymatic hydrolysis of brewer`s spent grain were identified as 100 rpm, 45 FPU/g and 2% w/v substrate. Under these conditions, a glucose yield of 93.1% and a cellulose conversion (into glucose and cellobiose) of 99.4% was achieved. The easiness of glucose release from BSG makes this substrate a raw material with great potential to be used in bioconversion processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Low-intensity pulsed ultrasound stimulation (LIPUS) reportedly increases osteogenesis in fracture models but fails in intact bone, suggesting LIPUS does not act on mechanotransduction and growth factor pathways of intact bone. Questions/Purposes We asked whether daily 20-minute LIPUS applied to intact tibias would act on bone proteins involved in mechanotransduction (focal adhesion kinase [FAK], and extracellular signal-regulated kinase-1/2 [ERK-1/2]), and growth factor signaling (insulin receptor substrate-1 [IRS-1]) pathways at 7, 14, and 21 days of treatment. Methods Immunoblotting was performed to detect FAK, ERK-1/2, and IRS-1 expression and activation from the stimulated intact tibias at 7, 14, and 21 days of daily 20-minute LIPUS. Results LIPUS increased FAK expression (at 7 days), ERK-1/2 (at 14 days), and IRS-1 (at 7 days), but expression decreased 7 days later, indicating a noncumulative effect of LIPUS. As only FAK expression was detected at 21 days, these observations suggest LIPUS influences nuclear reactions that may be modulated by a major cellular mechanism preferentially inhibiting IRS-1 expression and not FAK expression. Increased ERK-1/2 expression at 14 days suggests the differing mechanisms for promoting ERK-1/2, FAK, and IRS-1 syntheses. IRS-1 expression behaved similarly to FAK expression; therefore, LIPUS may modulate growth factor pathways. LIPUS increased sustained FAK and ERK-1/2 activation, but not IRS-1, suggesting sustained ERK-1/2 activation is not the result of mechanically induced growth factor activation. Conclusions LIPUS acts on mechanotransduction and growth factor pathways in intact bone in a noncumulative manner. Clinical relevance These data suggest LIPUS applied to intact bone acts on proteins involved in osteogenesis.