973 resultados para Subexponential distributions
Resumo:
Application of a high resolution high performance liquid chromatography-mass spectrometry method to the study of a microbial mat system has permitted the identification of a greater number of pigments derived from green bacteria than reported in a previous study. Although the green bacteria found in the mat were identified as Chloroflexus-like, bacteriochlorophylls and bacteriophaeophytins c that can be attributed to Chloroflexaceae on the basis of literature reports account for less than 10% of the pigments derived from green bacteria in the mat. Analysis of the bacteriochlorophylls and bacteriophaeophytins c and d using atmospheric pressure chemical ionisation-liquid chromatography-tandem mass spectrometry reveals complex depth profiles, signalling inputs from a number of organisms. The pigment compositions provide evidence for green bacteria living in close proximity to the living cyanobacterial mat. Depth profiles of pigments derived from green, purple and cyanobacteria indicate that the remnants of mats present in the deeper part of the section contain a record dominated by signatures from anoxygenic photoautotrophs.
Resumo:
Ternary and binary gradient systems have been developed for the high-performance liquid chromatographic analysis of complex pigment distributions typical of natural samples. Improved chromatographic resolution reveals significantly more pigment components in extracts from a sediment (Priest Pot, Cumbria, UK), a microbial mat (les Salines de la Trinital, South Catalonia, Spain) and a culture (C. phaeobacteroides) including novel bacteriochlorophyll derivatives. The methods developed are directly suited to LC–MS analysis and the automated acquisition of MS/MS data for pigments.
Resumo:
The distributions of molecules in the inner regions of a protostellar disk are presented. These were calculated using an uncoupled chemical/dynamical model, with a numerical integration of the vertical disk structure. A comparison between models with and without the effects of X-ray ionisation is made, and molecules are identified which are good tracers of the ionisation level in this part of the disk, notably CN and C_2H. In the region considered in this paper (r
Resumo:
We have examined the ability of observers to parse bimodal local-motion distributions into two global motion surfaces, either overlapping (yielding transparent motion) or spatially segregated (yielding a motion boundary). The stimuli were random dot kinematograms in which the direction of motion of each dot was drawn from one of two rectangular probability distributions. A wide range of direction distribution widths and separations was tested. The ability to discriminate the direction of motion of one of the two motion surfaces from the direction of a comparison stimulus was used as an objective test of the perception of two discrete surfaces. Performance for both transparent and spatially segregated motion was remarkably good, being only slightly inferior to that achieved with a single global motion surface. Performance was consistently better for segregated motion than for transparency. Whereas transparent motion was only perceived with direction distributions which were separated by a significant gap, segregated motion could be seen with abutting or even partially overlapping direction distributions. For transparency, the critical gap increased with the range of directions in the distribution. This result does not support models in which transparency depends on detection of a minimum size of gap defining a bimodal direction distribution. We suggest, instead, that the operations which detect bimodality are scaled (in the direction domain) with the overall range of distributions. This yields a flexible, adaptive system that determines whether a gap in the direction distribution serves as a segmentation cue or is smoothed as part of a unitary computation of global motion.
Resumo:
R-matrix calculated photoelectron angular distribution asymmetry parameters, beta for Cl+ 3s3p(5) P-3(o) and 3s(2)3p(3) (D-2(o))3d P-1(o) final ionic states in photoionization of the ground state of atomic Cl are presented in the photon energy range from threshold to 80 eV. The results, characterized by prominent autoionization structures which are sensitive to multielectron correlations, are compared with those recently measured by Whitfield et al (Whitfield S B, Kehoe K, Krause M 0 and Caldwell C D 2000 Phys. Rev. Lett. 84 4818). Contrary to experiment and previous theoretical calculations, our detailed CIV3 structure calculation (Deb N C, Crothers D S F, Felfli Z and Msezane A Z 2002 J. Phys. B: At. Mol. Opt. Phys. submitted) has identified the lowest P-1(o) level of Cl+ as 3S(2)3p(3)(D-2(o))3d P-1(o) rather than 3s3p(5) P-1(o). The implications and consequences of the measured data for the 3s P-1(o) level are also discussed in the context of our calculated energies for Cl+ and beta for 3d P-1(o).
Resumo:
In this paper, we investigate the capacity of multiple-input multiple-output (MIMO) wireless communication systems over spatially correlated Rayleigh distributed flat fading channels with complex Gaussian additive noise. Specifically, we derive the probability density function of the mutual information between transmitted and received complex signals of MIMO systems. Using this density we derive the closed-form ergodic capacity (mean), delay-limited capacity, capacity variance and outage capacity formulas for spatially correlated channels and then evaluate these formulas numerically. Numerical results show how the channel correlation degrades the capacity of MIMO communication systems. We also show that the density of mutual information of correlated/uncorrelated MIMO systems can be approximated by a Gaussian density with derived mean and variance, even for a finite number of inputs and outputs.
Resumo:
Aims.We aim to provide the atmospheric parameters and rotational velocities for a large sample of O- and early B-type stars, analysed in a homogeneous and consistent manner, for use in constraining theoretical models. Methods: Atmospheric parameters, stellar masses, and rotational velocities have been estimated for approximately 250 early B-type stars in the Large (LMC) and Small (SMC) Magellanic Clouds from high-resolution VLT-FLAMES data using the non-LTE TLUSTY model atmosphere code. This data set has been supplemented with our previous analyses of some 50 O-type stars (Mokiem et al. 2006, 2007) and 100 narrow-lined early B-type stars (Hunter et al. 2006; Trundle et al. 2007) from the same survey, providing a sample of ~400 early-type objects. Results: Comparison of the rotational velocities with evolutionary tracks suggests that the end of core hydrogen burning occurs later than currently predicted and we argue for an extension of the evolutionary tracks. We also show that the large number of the luminous blue supergiants observed in the fields are unlikely to have directly evolved from main-sequence massive O-type stars as neither their low rotational velocities nor their position on the H-R diagram are predicted. We suggest that blue loops or mass-transfer binary systems may populate the blue supergiant regime. By comparing the rotational velocity distributions of the Magellanic Cloud stars to a similar Galactic sample, we find that (at 3s confidence level) massive stars (above 8 M?) in the SMC rotate faster than those in the solar neighbourhood. However there appears to be no significant difference between the rotational velocity distributions in the Galaxy and the LMC. We find that the v sin i distributions in the SMC and LMC can modelled with an intrinsic rotational velocity distribution that is a Gaussian peaking at 175 km s-1 (SMC) and 100 km s-1 (LMC) with a 1/e half width of 150 km s-1. We find that in NGC 346 in the SMC, the 10-25 M? main-sequence stars appear to rotate faster than their higher mass counterparts. It is not expected that O-type stars spin down significantly through angular momentum loss via stellar winds at SMC metallicity, hence this could be a reflection of mass dependent birth spin rates. Recently Yoon et al. (2006) have determined rates of GRBs by modelling rapidly rotating massive star progenitors. Our measured rotational velocity distribution for the 10-25 M? stars is peaked at slightly higher velocities than they assume, supporting the idea that GRBs could come from rapid rotators with initial masses as low as 14 M? at low metallicities.
Resumo:
The coplanar microscale atmospheric pressure plasma jet (µ-APPJ) is a capacitively coupled radio frequency discharge (13.56 MHz, ~15W rf power) designed for optimized optical diagnostic access. It is operated in a homogeneous glow mode with a noble gas flow (1.4 slm He) containing a small admixture of molecular oxygen (~0.5%). Ground state atomic oxygen densities in the effluent up to 2 × 1014 cm-3 are measured by two-photon absorption laser-induced fluorescence spectroscopy (TALIF) providing space resolved density maps. The quantitative calibration of the TALIF setup is performed by comparative measurements with xenon. A maximum of the atomic oxygen density is observed for 0.6% molecular oxygen admixture. Furthermore, an increase in the rf power up to about 15W (depending on gas flow and mixture) leads to an increase in the effluent’s atomic oxygen density, then reaching a constant level for higher powers.