870 resultados para Stem Cell Research
Resumo:
In contrast to adults, autologous stem cell transplantation (ASCT) as part of the salvage strategy after high-dose chemo/radiotherapy in human immunodeficiency virus (HIV) related Non-Hodgkin lymphoma (NHL) is not yet established for children. We report on a 13-year patient with congenital HIV infection and refractory Burkitt lymphoma, who was successfully treated by high-dose therapy (HDT) including rituximab followed by ASCT. After 26 months follow-up the patient remains in complete remission and his HIV parameters have normalized with continued highly active antiretroviral therapy (HAART). HIV infection may no longer exclude children from ASCT as part of salvage therapy. Pediatr Blood Cancer (c) 2006 Wiley-Liss, Inc.
Resumo:
In 1997, the Swiss Transplant Working Group Blood and Marrow Transplantation (STABMT) initiated a mandatory national registry for all haematopoietic stem cell transplants (HSCT) in Switzerland. As of 2003, information was collected of 2010 patients with a first HSCT (577 allogeneic (29%) and 1433 autologous (71%) HSCT) and 616 additional re-transplants. This included 1167 male and 843 female patients with a median age of 42.4 years (range 0.2-76.6 years). Main indications were leukaemias (592; 29%) lymphoproliferative disorders (1,061; 53%), solid tumours (295; 15%) and non-malignant disorders (62; 3%). At the time of analysis 1,263 patients were alive (63%), 747 had died (37%). Probability of survival, transplant related mortality or relapse at 5 years was 52%, 21%, 36% for allogeneic and 54%, 5%, 60% for autologous HSCT. Outcome depended on indication, donor type, stem cell source and age of patient. HSCT is an established therapy in Switzerland. These data describe current practice and outcome.
Resumo:
Legislation influences the availability of embryos for research. The law in Switzerland, and in some other European countries, is restrictive concerning medically assisted reproduction and stem cell research. Swiss law prohibits the creation of embryos for research purposes. It permits the derivation of human embryonic stem cells for research from surplus embryos but prohibits research with intact surplus embryos and embryo donation to other couples. Swiss law defines all embryos generated during a reproductive cycle and not used for reproduction as surplus embryos. The aim of this study was to evaluate the surplus embryos generated in Switzerland in 2003. A detailed questionnaire was sent to all registered IVF units in Switzerland (n = 22). 11727 embryos were generated during 2003. Of these, 93.5% were transferred into the uterus and 0.4% were cryopreserved. The remaining 6.1% (n = 711) became surplus. Of these, 2.7% were transferred intravaginally and the rest discarded due to poor quality (1.6%), development arrest (1.5%), renunciation by the couple (0.2%) or for other reasons (0.1%). The number of surplus embryos in Switzerland in 2003 was evaluated. Most surplus embryos became so during a therapeutic cycle. The restrictive legal regulation decreases the availability of human embryos for research.
Resumo:
Stem cells of various tissues are typically defined as multipotent cells with 'self-renewal' properties. Despite the increasing interest in stem cells, surprisingly little is known about the number of times stem cells can or do divide over a lifetime. Based on telomere-length measurements of hematopoietic cells, we previously proposed that the self-renewal capacity of hematopoietic stem cells is limited by progressive telomere attrition and that such cells divide very rapidly during the first year of life. Recent studies of patients with aplastic anemia resulting from inherited mutations in telomerase genes support the notion that the replicative potential of hematopoietic stem cells is directly related to telomere length, which is indirectly related to telomerase levels. To revisit conclusions about stem cell turnover based on cross-sectional studies of telomere length, we performed a longitudinal study of telomere length in leukocytes from newborn baboons. All four individual animals studied showed a rapid decline in telomere length (approximately 2-3 kb) in granulocytes and lymphocytes in the first year after birth. After 50-70 weeks the telomere length appeared to stabilize in all cell types. These observations suggest that hematopoietic stem cells, after an initial phase of rapid expansion, switch at around 1 year of age to a different functional mode characterized by a markedly decreased turnover rate.
Resumo:
BACKGROUND AND OBJECTIVES: There are no widely accepted criteria for the definition of hematopoietic stem cell transplant -associated microangiopathy (TAM). An International Working Group was formed to develop a consensus formulation of criteria for diagnosing clinically significant TAM. DESIGN AND METHODS: The participants proposed a list of candidate criteria, selected those considered necessary, and ranked those considered optional to identify a core set of criteria. Three obligatory criteria and four optional criteria that ranked highest formed a core set. In an appropriateness panel process, the participants scored the diagnosis of 16 patient profiles as appropriate or not appropriate for TAM. Using the experts' ratings on the patient profiles as a gold standard, the sensitivity and specificity of 24 candidate definitions of the disorder developed from the core set of criteria were evaluated. A nominal group technique was used to facilitate consensus formation. The definition of TAM with the highest score formed the final PROPOSAL. RESULTS: The Working Group proposes that the diagnosis of TAM requires fulfilment of all of the following criteria: (i) >4% schistocytes in blood; (ii) de novo, prolonged or progressive thrombocytopenia (platelet count <50 x 109/L or 50% or greater reduction from previous counts); (iii) sudden and persistent increase in lactate dehydrogenase concentration; (iv) decrease in hemoglobin concentration or increased transfusion requirement; and (v) decrease in serum haptoglobin. The sensitivity and specificity of this definition exceed 80%. INTERPRETATION AND CONCLUSIONS: The Working Group recommends that the presented criteria of TAM be adopted in clinical use, especially in scientific trials.
Resumo:
Between January 1990 and April 2001, 115 patients received high-dose chemotherapy (HDT) followed by autologous stem cell transplantation (ASCT) for relapsed or refractory Hodgkin lymphoma (HL). With a median follow-up of 58 months (range, 1 - 175 months), 5-year progression-free survival (PFS) and overall survival (OS) were 46% and 58%, respectively. Twelve patients with primary refractory disease had a 5-year PFS of 41% and OS of 58%, not significantly different from those of the remaining cohort. Early and overall regimen related mortality were 7% and 16%, respectively. Male gender (P = 0.04) and a time to relapse (TTR) < 12 months (P = 0.03) were associated with decreased OS by univariate analysis. In multivariate analysis, TTR < 12 months remained statistically significant (P = 0.04). We have confirmed that HDT and ASCT result in long-term survival for a proportion of patients with relapsed or refractory HL. All patients, including those with primary refractory disease, benefited from HDT and ASCT.
Resumo:
Peripheral arterial occlusive disease (PAOD) is a manifestation of systemic atherosclerosis strongly associated with a high risk of cardiovascular morbidity and mortality. In a considerable proportion of patients with PAOD, revascularization either by endovascular means or by open surgery combined with best possible risk factor modification does not achieve limb salvage or relief of ischaemic rest pain. As a consequence, novel therapeutic strategies have been developed over the last two decades aiming to promote neovascularization and remodelling of collaterals. Gene and stem cell therapy are the main directions for clinical investigation concepts. For both, preclinical studies have shown promising results using a wide variety of genes encoding for growth factors and populations of adult stem cells, respectively. As a consequence, clinical trials have been performed applying gene and stem cell-based concepts. However, it has become apparent that a straightforward translation into humans is not possible. While several trials reported relief of symptoms and functional improvement, other trials did not confirm this early promise of efficacy. Ongoing clinical trials with an improved study design are needed to confirm the potential that gene and cell therapy may have and to prevent the gaps in our scientific knowledge that will jeopardize the establishment of angiogenic therapy as an additional medical treatment of PAOD. This review summarizes the experimental background and presents the current status of clinical applications and future perspectives of the therapeutic use of gene and cell therapy strategies for PAOD.
Resumo:
The capacity of stem cells to regenerate lost tissue cells has gained recognition among physicians. Despite the successful use of blood stem cells for treating blood cancers, other stem cell types have not yet been widely introduced into clinical practice. Therapy options involving stem cells for inner ear diseases consequently have not been implemented. Nonetheless, several reports have recently been published describing the generation of morphologically and immunologically distinctive inner ear cell types-such as hair cells, supporting cells, and spiral ganglion neurons-from stem cells. Although promising, all of these studies still lack functional results regarding hearing restoration or vestibular function.
Resumo:
Most genetic diseases of the lymphohematopoietic system, including hemoglobinopathies, can now be diagnosed early in gestation. However, as yet, prenatal treatment is not available. Postnatal therapy by hematopoietic stem cell (HSC) transplantation from bone marrow, mobilized peripheral blood, or umbilical cord blood is possible for several of these diseases, in particular for the hemoglobinopathies, but is often limited by a lack of histocompatible donors, severe treatment-associated morbidity, and preexisting organ damage that developed before birth. In-utero transplantation of allogeneic HSC has been performed successfully in various animal models and recently in humans. However, the clinical success of this novel treatment is limited to diseases in which the fetus is affected by severe immunodeficiency. The lack of donor cell engraftment in nonimmunocompromised hosts is thought to be due to immunologic barriers, as well as to competitive fetal marrow population by host HSCs. Among the possible strategies to circumvent allogeneic HLA barriers, the use of gene therapy by genetically corrected autologous HSCs in the fetus is one of the most promising approaches. The recent development of strategies to overcome failure of efficient transduction of quiescent hematopoietic cells using new vector constructs and transduction protocols opens new perspectives for gene therapy in general, as well as for prenatal gene transfer in particular. The fetus might be especially susceptible for successful gene therapy approaches because of the developing, expanding hematopoietic system during gestation and the immunologic naiveté early in gestation, precluding immune reaction towards the transgene by inducing tolerance. Ethical issues, in particular regarding treatment safety, must be addressed more closely before clinical trials with fetal gene therapy in human pregnancies can be initiated.
Resumo:
PURPOSE: Glioblastomas are notorious for resistance to therapy, which has been attributed to DNA-repair proficiency, a multitude of deregulated molecular pathways, and, more recently, to the particular biologic behavior of tumor stem-like cells. Here, we aimed to identify molecular profiles specific for treatment resistance to the current standard of care of concomitant chemoradiotherapy with the alkylating agent temozolomide. PATIENTS AND METHODS: Gene expression profiles of 80 glioblastomas were interrogated for associations with resistance to therapy. Patients were treated within clinical trials testing the addition of concomitant and adjuvant temozolomide to radiotherapy. RESULTS: An expression signature dominated by HOX genes, which comprises Prominin-1 (CD133), emerged as a predictor for poor survival in patients treated with concomitant chemoradiotherapy (n = 42; hazard ratio = 2.69; 95% CI, 1.38 to 5.26; P = .004). This association could be validated in an independent data set. Provocatively, the HOX cluster was reminiscent of a "self-renewal" signature (P = .008; Gene Set Enrichment Analysis) recently characterized in a mouse leukemia model. The HOX signature and EGFR expression were independent prognostic factors in multivariate analysis, adjusted for the O-6-methylguanine-DNA methyltransferase (MGMT) methylation status, a known predictive factor for benefit from temozolomide, and age. Better outcome was associated with gene clusters characterizing features of tumor-host interaction including tumor vascularization and cell adhesion, and innate immune response. CONCLUSION: This study provides first clinical evidence for the implication of a "glioma stem cell" or "self-renewal" phenotype in treatment resistance of glioblastoma. Biologic mechanisms identified here to be relevant for resistance will guide future targeted therapies and respective marker development for individualized treatment and patient selection.
Resumo:
Carbon nanotubes were first cut and functionalized with a newly developed reaction involving autoclaving and sonication in hydrogen peroxide. The functionalized nanotubes were characterized and evaluated for aqueous solubility. Studies which relate reaction conditions to final carbon nanotube length were conducted. Hydroxyl groups present on the carbon nanotubes served as a platform for a series of addition reactions, with the objective of conjugating streptavidin and fluorescent markers onto the carbon nanotubes. The modified nanotubes were attached onto the surface of biotinylated mesenchymal stem cells, creating a novel, tumor-homing delivery system for photothermal anticancer agents.
Resumo:
The current organ shortage in transplantation medicine stimulates the exploration of new strategies to expand the donor pool including the utilisation of living donors, ABO-incompatible grafts, and xenotransplantation. Preformed natural antibodies (Ab) such as anti-Gal or anti-A/B Ab mediate hyperacute graft rejection and thus represent a major hurdle to the employment of such strategies. In contrast to solid organ transplantation (SOT), ABO blood group incompatibilities are of minor importance in haematopoietic stem cell transplantation (HSCT). Thus, ABO incompatible HSCT may serve as an in vivo model to study carbohydrate antigen (Ag)-mismatched transplantations such as ABO-incompatible SOT or the effect of preformed Ab against Gal in xenotransplantation. This mini-review summarises our clinical and experimental studies performed with the support of the Swiss National Science Foundation program on Implants and Transplants (NFP-46). Part 1 describes data on the clinical outcome of ABO-incompatible HSCT, in particular the incidence of several immunohaematological complications, acute graft-versus-host-disease (GvHD), and the overall survival. Part 2 summarises the measurements of anti-A/B Ab in healthy blood donors and ABO-incompatible HSCT using a novel flow cytometry based method and the potential mechanisms responsible for the loss of anti-A/B Ab observed following minor ABO-incompatible HSCT, ie the occurrence of humoral tolerance. Part 3 analyses the potential of eliminating Gal expression as well as specific complement inhibitors such as dextran sulfate and synthetic tyrosine analogues to protect porcine endothelial cells from xenoreactive Ab-mediated damage in vitro and in a hamster-to-rat heart transplantation model. In conclusion, due to similarities of the immunological hurdles of ABO incompatible transplantations and xenotransplantation, the knowledge obtained from both fields might lead to new strategies to overcome humoral rejection in transplantation.
Resumo:
In this single-center, cross-sectional study, we evaluated 44 very long-term survivors with a median follow-up of 17.5 years (range, 11-26 years) after hematopoietic stem cell transplantation. We assessed the telomere length difference in human leukocyte antigen-identical donor and recipient sibling pairs and searched for its relationship with clinical factors. The telomere length (in kb, mean +/- SD) was significantly shorter in all recipient blood cells compared with their donors' blood cells (P < .01): granulocytes (6.5 +/- 0.9 vs 7.1 +/- 0.9), naive/memory T cells (5.7 +/- 1.2 vs 6.6 +/- 1.2; 5.2 +/- 1.0 vs 5.7 +/- 0.9), B cells (7.1 +/- 1.1 vs 7.8 +/- 1.1), and natural killer/natural killer T cells (4.8 +/- 1.0 vs 5.6 +/- 1.3). Chronic graft-versus-host disease (P < .04) and a female donor (P < .04) were associated with a greater difference in telomere length between donor and recipient. Critically short telomeres have been described in degenerative diseases and secondary malignancies. If this hypothesis can be confirmed, identification of recipients at risk for cellular senescence could become part of monitoring long-term survivors after hematopoietic stem cell transplantation.
Resumo:
OBJECTIVE: Nursing in 'live islands' and routine high dose intravenous immunoglobulins after allogeneic hematopoietic stem cell transplantation were abandoned by many teams in view of limited evidence and high costs. METHODS: This retrospective single-center study examines the impact of change from nursing in 'live islands' to care in single rooms (SR) and from high dose to targeted intravenous immunoglobulins (IVIG) on mortality and infection rate of adult patients receiving an allogeneic stem cell or bone marrow transplantation in two steps and three time cohorts (1993-1997, 1997-2000, 2000-2003). RESULTS: Two hundred forty-eight allogeneic hematopoetic stem cell transplantations were performed in 227 patients. Patient characteristics were comparable in the three cohorts for gender, median age, underlying disease, and disease stage, prophylaxis for graft versus host disease (GvHD) and cytomegalovirus constellation. The incidence of infections (78.4%) and infection rates remained stable (rates/1000 days of neutropenia for sepsis 17.61, for pneumonia 6.76). Cumulative incidence of GvHD and transplant-related mortality did not change over time. CONCLUSIONS: Change from nursing in 'live islands' to SR and reduction of high dose to targeted IVIG did not result in increased infection rates or mortality despite an increase in patient age. These results support the current practice.