668 resultados para Sputtering
Resumo:
The effect of oxygen pressure (P-O2) on the Yttrium Iron Garnet (YIG) thin films were grown on silicon substrate by rf sputtering method was studied. The as-deposited films at 300K were amorphous in nature. The crystallization of these films was achieved by annealing at a temperature of 800 degrees C/1hr in air. The structural, microstructural and magnetic properties were found to be dependent on P-O2.
Resumo:
This paper reports optical and nanomechanical properties of predominantly a-axis oriented AlN thin films. These films were deposited by reactive DC magnetron sputtering technique at an optimal target to substrate distance of 180 mm. X-ray rocking curve (FWHM = 52 arcsec) studies confirmed the preferred orientation. Spectroscopic ellipsometry revealed a refractive index of 1.93 at a wavelength of 546 nm. The hardness and elastic modulus of these films were 17 and 190 GPa, respectively, which are much higher than those reported earlier can be useful for piezoelectric films in bulk acoustic wave resonators. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4772204]
Resumo:
Chromium nitride (CrN) thin films were deposited at room temperature on silicon and glass substrates using DC reactive magnetron sputtering in Ar + N-2 plasma. Structure and mechanical properties of these films were examined by using XRD, FESEM and nanoindentation techniques. XRD studies revealed that films are of mixed phase at lower nitrogen partial pressure (P-N2) and single phase at higher (P-N2). Microscopy results show that the films were composed of non-equiaxed columns with nanocrystallite morphology. The hardness and elastic modulus of the films increase with increasing nitrogen partial pressure (P-N2). A maximum hardness of similar to 29 GPa and elastic modulus of 341 GPa were obtained, which make these films useful for several potential applications. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we report on the application aspect of piezoelectric ZnO thin film deposited on flexible phynox alloy substrate. Highly crystalline piezoelectric ZnO thin films were deposited by RF reactive magnetron sputtering and were characterized by XRD, SEM, AFM analysis. Also, the effective d(33) coefficient value measurement was performed. The actuator element is a circular diaphragm of phynox alloy on to which piezoelectric ZnO thin film was deposited. ZnO film deposited actuator element was firmly fixed inside a suitable concave perspex mounting designed specifically for micro actuation purpose. The actuator element was excited at different frequencies for the supply voltages of 2V, 5V and 8V. Maximum deflection of the ZnO film deposited diaphragm was measured to be 1.25 mu m at 100 Hz for the supply voltage of 8V. The developed micro actuator has the potential to be used as a micro pump for pumping nano liters to micro liters of fluids per minute for numerous biomedical and aerospace applications.
Resumo:
Electrodeposition of Co-W alloy coatings has been carried out with DC and PC using gluconate bath at different pH. These coatings are characterized for their structure, morphology and chemical composition by X-ray diffraction, field emission scanning electron microscopy, differential scanning calorimetry and X-ray photoelectron spectroscopy (XPS). Alloy coatings plated at pH8 are crystalline, whereas coatings electrodeposited at pH5 are nanocrystalline in nature. XPS studies have demonstrated that as-deposited alloy plated at pH8 with DC contain only Co2+ and W6+ species, whereas that alloy plated at pH5 has significant amount of Co-0 and W-0 along with Co2+ and W6+ species. Again, Co2+ and W6+ are main species in all as-deposited PC plated alloys in both pH. Co-0 concentration increases upon successive sputtering of all alloy coatings. In contrast, mainly W6+ species is detected in the following layers of all alloys plated with PC. Alloys plated at pH5 show higher microhardness compared to their pH8 counterparts.
Resumo:
Metal-oxide semiconductor capacitors based on titanium dioxide (TiO2) gate dielectrics were prepared by RF magnetron sputtering technique. The deposited films were post-annealed at temperatures in the range 773-1173 K in air for 1 hour. The effect of annealing temperature on the structural properties of TiO2 films was investigated by X-ray diffraction and Raman spectroscopy, the surface morphology was studied by atomic force microscopy (AFM) and the electrical properties of Al/TiO2/p-Si structure were measured recording capacitance-voltage and current-voltage characteristics. The as-deposited films and the films annealed at temperatures lower than 773 K formed in the anatase phase, while those annealed at temperatures higher than 973 K were made of mixtures of the rutile and anatase phases. FTIR analysis revealed that, in the case of films annealed at 1173 K, an interfacial layer had formed, thereby reducing the dielectric constant. The dielectric constant of the as-deposited films was 14 and increased from 25 to 50 with increases in the annealing temperature from 773 to 973 K. The leakage current density of as-deposited films was 1.7 x 10(-5) and decreased from 4.7 X 10(-6) to 3.5 x 10(-9) A/cm(2) with increases in the annealing temperature from 773 to 1173 K. The electrical conduction in the Al/TiO2/p-Si structures was studied on the basis of the plots of Schottky emission, Poole-Frenkel emission and Fowler-Nordheim tunnelling. The effect of structural changes on the current-voltage and capacitance-voltage characteristics of Al/TiO2/p-Si capacitors was also discussed.
Composition, structure and electrical properties of DC reactive magnetron sputtered Al2O3 thin films
Resumo:
Thin films of alumina (Al2O3) were deposited over Si < 1 0 0 > substrates at room temperature at an oxygen gas pressure of 0.03 Pa and sputtering power of 60 W using DC reactive magnetron sputtering. The composition of the as-deposited film was analyzed by X-ray photoelectron spectroscopy and the O/Al atomic ratio was found to be 1.72. The films were then annealed in vacuum to 350, 550 and 750 degrees C and X-ray diffraction results revealed that both as-deposited and post deposition annealed films were amorphous. The surface morphology and topography of the films was studied using scanning electron microscopy and atomic force microscopy, respectively. A progressive decrease in the root mean square (RMS) roughness of the films from 1.53 nm to 0.7 nm was observed with increase in the annealing temperature. Al-Al2O3-Al thin film capacitors were then fabricated on p-type Si < 1 0 0 > substrate to study the effect of temperature and frequency on the dielectric property of the films and the results are discussed.
Resumo:
We investigated the structural and magnetic properties of SmCo5/Co exchange coupled nanocomposite thin films grown by magnetron sputtering from Sm and Co multitargets successively. The growth of the films was carried out at elevated substrate temperature followed by in situ annealing. On Si (100) substrate, X-ray diffraction confirms the formation of textured (110) SmCo5 hard phase, whereas on MgO (110) substrate, the diffraction pattern shows the epitaxial growth of SmCo5 phase with crystalline orientation along 100] direction. Secondary Ion Mass Spectroscopy reveals the structural transformation from multilayered (Sm/Co) to SmCo5/Co nano-composite films due to high reactivity of Sm at elevated temperature. Transmission electron microscopy indicates the existence of nanocrystalline phase of SmCo5 along with unreacted Co. Observed single phase behavior in magnetic hysteresis measurements indicates well exchange coupling between the soft and the hard phases in these nano-composite films. For samples with samarium layer thickness, t(sm)=3.2 nm and cobalt layer thickness, t(Co)= 11.4 nm, the values of (BH)(max) were obtained as 20.1 MGOe and 12.38 MGOe with H-c value similar to 3.0 kOe grown on MgO and Si substrates, respectively.
Resumo:
Fourier Transform Infrared (FTIR) spectroscopic analysis has been carried out on the hydrogenated amorphous silicon (a-Si:H) thin films deposited by DC, pulsed DC (PDC) and RF sputtering process to get insight regarding the total hydrogen concentration (C-H) in the films, configuration of hydrogen bonding, density of the films (decided by the vacancy and void incorporation) and the microstructure factor (R*) which varies with the type of sputtering carried out at the same processing conditions. The hydrogen incorporation is found to be more in RF sputter deposited films as compared to PDC and DC sputter deposited films. All the films were broadly divided into two regions namely vacancy dominated and void dominated regions. At low hydrogen dilutions the films are vacancy dominated and at high hydrogen dilutions they are void dominated. This demarcation is at C-H = 23 at.% H for RF, C-H = 18 at.% H for PDC and C-H = 14 at.% H for DC sputter deposited films. The microstructure structure factor R* is found to be as low as 0.029 for DC sputter deposited films at low C-H. For a given C-H, DC sputter deposited films have low R* as compared to PDC and RF sputter deposited films. Signature of dihydride incorporation is found to be more in DC sputter deposited films at low C-H.
Resumo:
Thin films of NiTi were deposited by DC magnetron sputtering from an equiatomic alloy target (Ni/Ti: 50/50 at.%). The films were deposited without intentional heating of the substrates. The thickness of the deposited films was approximately 2 mu m. The structure and morphology of NiTi films annealed at different temperatures were analyzed in order to understand the effect of annealing on physical properties of the films. The compositional investigations of fresh and annealed films were also evaluated by energy dispersive X-ray spectroscopy (EDS) and X-ray photo-electron spectroscopy (XPS) techniques. X-ray diffraction (XRD) studies showed that as-deposited films were amorphous in nature whereas annealed films were found to poly-crystalline with the presence of Austenite phase as the dominant phase. AFM investigations showed higher grain size and surface roughness values in the annealed films. In annealed films, the grain size and film roughness values were increased from 10 to 85 nm and 2-18 nm. Film composition measured by EDS were found to 52.5 atomic percent of Ni and 47.5 atomic percent of Ti. XPS investigations, demonstrated the presence of Ni content on the surface of the films, in fresh films, whereas annealed films did not show any nickel. From HR-XPS investigations, it can be concluded that annealed NiTi films have higher tendency to form metal oxide (titanium dioxide) layer on the surface of the films than fresh NiTi films. (C) 2013 Elsevier B. V. All rights reserved.
Resumo:
We report ferromagnetic resonance (FMR) study on a grid formed with permalloy nanowires to understand the spin wave dynamics. The presence of two sets of magnetic nanowires perpendicular to each other in the same device enables better control over spin waves. The grid was fabricated using e-beam lithography followed by DC-Magnetron sputtering and liftoff technique. It has dimensions of 800 +/- 10 and 400 +/- 10 nm as periods along X and Y directions with permalloy wires of width 145 +/- 10 nm. FMR studies were done at X-band (9.4 GHz) with the field sweep up to 1 Tesla. The in-plane angular variation of resonant fields shows that there are two well separated modes present, indicating two uniaxial anisotropy axes which are perpendicular to each other. The variation in the intensities in the FMR signal w.r.t. the grid angle is used to describe the spin wave confinement in different regions of the grid. We also explained the asymmetry in the magnetic properties caused by the geometrical property of the rectangular grid and the origin for the peak splitting for the modes occurring at higher resonant fields. Micromagnetic simulations based on OOMMF with two dimensional periodic boundary conditions (2D-PBC) are used to support our experimental findings.
Resumo:
We report on the design, development, and performance study of a packaged piezoelectric thin film impact sensor, and its potential application in non-destructive material discrimination. The impact sensing element employed was a thin circular diaphragm of flexible Phynox alloy. Piezoelectric ZnO thin film as an impact sensing layer was deposited on to the Phynox alloy diaphragm by RF reactive magnetron sputtering. Deposited ZnO thin film was characterized by X-ray diffraction (XRD), Atomic Force Microscopy (AFM), and Scanning Electron Microscopy (SEM) techniques. The d(31) piezoelectric coefficient value of ZnO thin film was 4.7 pm V-1, as measured by 4-point bending method. ZnO film deposited diaphragm based sensing element was properly packaged in a suitable housing made of High Density Polyethylene (HDPE) material. Packaged impact sensor was used in an experimental set-up, which was designed and developed in-house for non-destructive material discrimination studies. Materials of different densities (iron, glass, wood, and plastic) were used as test specimens for material discrimination studies. The analysis of output voltage waveforms obtained reveals lots of valuable information about the impacted material. Impact sensor was able to discriminate the test materials on the basis of the difference in their densities. The output response of packaged impact sensor shows high linearity and repeatability. The packaged impact sensor discussed in this paper is highly sensitive, reliable, and cost-effective.
Resumo:
The microstructure and mechanical properties of nanocrystalline Pd films prepared by magnetron sputtering have been investigated as a function of strain. The films were deposited onto polyimide substrates and tested in tensile mode. In order to follow the deformation processes in the material, several samples were strained to defined straining states, up to a maximum engineering strain of 10%, and prepared for post-mortem analysis. The nanocrystalline structure was investigated by quantitative automated crystal orientation mapping (ACOM) in a transmission electron microscope (TEM), identifying grain growth and twinning/detwinning resulting from dislocation activity as two of the mechanisms contributing to the macroscopic deformation. Depending on the initial twin density, the samples behaved differently. For low initial twin densities, an increasing twin density was found during straining. On the other hand, starting from a higher twin density, the twins were depleted with increasing strain. The findings from ACOM-TEM were confirmed by results from molecular dynamics (MD) simulations and from conventional and in-situ synchrotron X-ray diffraction (CXRD, SXRD) experiments.
Resumo:
Titanium dioxide (TiO2) thin films are deposited on unheated p-Si (100) and quartz substrates by employing DC reactive magnetron sputtering technique. The effect of post-deposition annealing in air at temperatures in the range 673-973 K on the structural, electrical, and dielectric properties of the films was investigated. The chemical composition of the TiO2 films was analyzed with X-ray photoelectron spectroscopy. The surface morphology of the films was studied by atomic force microscope. The optical band gap of the as-deposited film was 3.50 eV, and it increased to 3.55 eV with the increase in annealing temperature to 773 K. The films annealed at higher temperature of 973 K showed the optical band gap of 3.43 eV. Thin film capacitors were fabricated with the MOS configuration of Al/TiO2/p-Si. The leakage current density of the as-deposited films was 1.2 x 10(-6) A/cm(2), and it decreased to 5.9 x 10(-9) A/cm(2) with the increase in annealing temperature to 973 K. These films showed high dielectric constant value of 36. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Direct current electrodeposition of Co-P alloy coatings were carried out using gluconate bath and they were characterized by employing techniques like XRD, FESEM, DSC and XPS. Broad XRD lines demonstrate the amorphous nature of Co-P coatings. Spherical and rough nodules are observed on the surface of coatings as seen from FESEM images. Three exothermic peaks around 290, 342 and 390 degrees C in DSC profiles of Co-P coatings could be attributed to the crystallization and formation of Co2P phase in the coatings. As-deposited coatings consist of Co metal and oxidized Co species as revealed by XPS studies. Bulk alloy P (P delta-) as well as oxidized P (P5+) are present on the surface of coatings. Concentrations of Co metal and P delta- increase with successive sputtering of the coating. Observed microhardness value is 1005 HK when Co-P coating obtained from 10 g L-1 NaH2PO2 is heated at 400 degrees C that is comparable with hard chromium coatings.