481 resultados para Spinning


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a novel numerical method at unprecedented resolution, we demonstrate that structures of small to intermediate scale in rotating, stratified flows are intrinsically three-dimensional. Such flows are characterized by vortices (spinning volumes of fluid), regions of large vorticity gradients, and filamentary structures at all scales. It is found that such structures have predominantly three-dimensional dynamics below a horizontal scale LLR, where LR is the so-called Rossby radius of deformation, equal to the characteristic vertical scale of the fluid H divided by the ratio of the rotational and buoyancy frequencies f/N. The breakdown of two-dimensional dynamics at these scales is attributed to the so-called "tall-column instability" [D. G. Dritschel and M. de la Torre Juárez, J. Fluid. Mech. 328, 129 (1996)], which is active on columnar vortices that are tall after scaling by f/N, or, equivalently, that are narrow compared with LR. Moreover, this instability eventually leads to a simple relationship between typical vertical and horizontal scales: for each vertical wave number (apart from the vertically averaged, barotropic component of the flow) the average horizontal wave number is equal to f/N times the vertical wave number. The practical implication is that three-dimensional modeling is essential to capture the behavior of rotating, stratified fluids. Two-dimensional models are not valid for scales below LR. ©1999 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate variability in the African Soudano-Sahel savanna zone has attracted much attention because of the persistence of anomalously low rainfall. Past efforts to monitor the climate of this region have focused on rainfall and vegetation conditions, while land surface temperature (LST) has received less attention. Remote sensing of LST is feasible and possible at global scale. Most remotely sensed estimates of LST are based on the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) that are limited in their ability to capture the full diurnal cycle. Although more frequent observations are available from past geostationary satellites, their spatial resolution is coarser than that of polar orbiting satellites. In this study, the improved capabilities of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on the METEOSAT Second Generation (MSG) instrument are used to remotely sense the LST in the African Soudano-Sahel savanna zone at a resolution of 3 km and 15 minutes. In support of the Radiative Atmospheric Divergence using the ARM Mobile Facility (AMF), GERB and AMMA Stations (RADAGAST) project, African Monsoon Multidisciplinary Analyses (AMMA) project and the Department of Energy's Atmospheric Radiation Measurement (ARM) program, the ARM Mobile Facility was deployed during 2006 in this climatically sensitive region, thereby providing a unique opportunity to evaluate remotely sensed algorithms for deriving LST.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Joint UK Land Environmental Simulator (JULES) was run offline to investigate the sensitivity of land surface type changes over South Africa. Sensitivity tests were made in idealised experiments where the actual land surface cover is replaced by a single homogeneous surface type. The vegetation surface types on which some of the experiments were made are static. Experimental tests were evaluated against the control. The model results show among others that the change of the surface cover results in changes of other variables such as soil moisture, albedo, net radiation and etc. These changes are also visible in the spin up process. The model shows different surfaces spinning up at different cycles. Because JULES is the land surface model of Unified Model, the results could be more physically meaningful if it is coupled to the Unified Model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nuclear mnagnetic resonance (NMR) spectroscopy involves the excitation of nuclei by electromagnetic radiation in the radio-frequency range of the electromagnetic spectrum. For a nucleus to absorb energy from radiowaves in this way, it must hve the quantum mechanical property of spin. A spinning nucleus, such as that of the hydrogen atom, will dopt one f only two possible states when placed in a magnetic field. (In NMR, the hydrogen nucleus is often referred to as a proton, and is given the abbreviation 1H.) Az the strength of the magnetic field is increased, there is a proportional increase in the energy 'gap' between these two states. We can predic the resonant frequency at which any spinning nucleus will absorb energy from radio-frequency radiation as it jumps from the lower energy state to the upper state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pig is a single-stomached omnivorous mammal and is an important model of human disease and nutrition. As such, it is necessary to establish a metabolic framework from which pathology-based variation can be compared. Here, a combination of one and two-dimensional (1)H and (13)C nuclear magnetic resonance spectroscopy (NMR) and high-resolution magic angle spinning (HR-MAS) NMR was used to provide a systems overview of porcine metabolism via characterisation of the urine, serum, liver and kidney metabolomes. The metabolites observed in each of these biological compartments were found to be qualitatively comparable to the metabolic signature of the same biological matrices in humans and rodents. The data were modelled using a combination of principal components analysis and Venn diagram mapping. Urine represented the most metabolically distinct biological compartment studied, with a relatively greater number of NMR detectable metabolites present, many of which are implicated in gut-microbial co-metabolic processes. The major inter-species differences observed were in the phase II conjugation of extra-genomic metabolites; the pig was observed to conjugate p-cresol, a gut microbial metabolite of tyrosine, with glucuronide rather than sulfate as seen in man. These observations are important to note when considering the translatability of experimental data derived from porcine models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well known that gut bacteria contribute significantly to the host homeostasis, providing a range of benefits such as immune protection and vitamin synthesis. They also supply the host with a considerable amount of nutrients, making this ecosystem an essential metabolic organ. In the context of increasing evidence of the link between the gut flora and the metabolic syndrome, understanding the metabolic interaction between the host and its gut microbiota is becoming an important challenge of modern biology.1-4 Colonization (also referred to as normalization process) designates the establishment of micro-organisms in a former germ-free animal. While it is a natural process occurring at birth, it is also used in adult germ-free animals to control the gut floral ecosystem and further determine its impact on the host metabolism. A common procedure to control the colonization process is to use the gavage method with a single or a mixture of micro-organisms. This method results in a very quick colonization and presents the disadvantage of being extremely stressful5. It is therefore useful to minimize the stress and to obtain a slower colonization process to observe gradually the impact of bacterial establishment on the host metabolism. In this manuscript, we describe a procedure to assess the modification of hepatic metabolism during a gradual colonization process using a non-destructive metabolic profiling technique. We propose to monitor gut microbial colonization by assessing the gut microbial metabolic activity reflected by the urinary excretion of microbial co-metabolites by 1H NMR-based metabolic profiling. This allows an appreciation of the stability of gut microbial activity beyond the stable establishment of the gut microbial ecosystem usually assessed by monitoring fecal bacteria by DGGE (denaturing gradient gel electrophoresis).6 The colonization takes place in a conventional open environment and is initiated by a dirty litter soiled by conventional animals, which will serve as controls. Rodents being coprophagous animals, this ensures a homogenous colonization as previously described.7 Hepatic metabolic profiling is measured directly from an intact liver biopsy using 1H High Resolution Magic Angle Spinning NMR spectroscopy. This semi-quantitative technique offers a quick way to assess, without damaging the cell structure, the major metabolites such as triglycerides, glucose and glycogen in order to further estimate the complex interaction between the colonization process and the hepatic metabolism7-10. This method can also be applied to any tissue biopsy11,12.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We explore the influence of a rotating collector on the internal structure of poly(ε-caprolactone) fibres electrospun from a solution in dichloroethane. We find that above a threshold collector speed, the mean fibre diameter reduces as the speed increases and the fibres are further extended. Small-angle and wide-angle X-ray scattering techniques show a preferred orientation of the lamellar crystals normal to the fibre axis which increases with collector speed to a maximum and then reduces. We have separated out the processes of fibre alignment on the collector and the orientation of crystals within the fibres. There are several stages to this behaviour which correspond to the situations (a) where the collector speed is slower than the fibre spinning rate, (b) the fibre is mechanically extended by the rotating collector and (c) where the deformation leads to fibre fracture. The mechanical deformation leads to a development of preferred orientation with extension which is similar to the prediction of the pseudo-affine deformation model and suggests that the deformation takes place during the spinning process after the crystals have formed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With many operational centers moving toward order 1-km-gridlength models for routine weather forecasting, this paper presents a systematic investigation of the properties of high-resolution versions of the Met Office Unified Model for short-range forecasting of convective rainfall events. The authors describe a suite of configurations of the Met Office Unified Model running with grid lengths of 12, 4, and 1 km and analyze results from these models for a number of convective cases from the summers of 2003, 2004, and 2005. The analysis includes subjective evaluation of the rainfall fields and comparisons of rainfall amounts, initiation, cell statistics, and a scale-selective verification technique. It is shown that the 4- and 1-km-gridlength models often give more realistic-looking precipitation fields because convection is represented explicitly rather than parameterized. However, the 4-km model representation suffers from large convective cells and delayed initiation because the grid length is too long to correctly reproduce the convection explicitly. These problems are not as evident in the 1-km model, although it does suffer from too numerous small cells in some situations. Both the 4- and 1-km models suffer from poor representation at the start of the forecast in the period when the high-resolution detail is spinning up from the lower-resolution (12 km) starting data used. A scale-selective precipitation verification technique implies that for later times in the forecasts (after the spinup period) the 1-km model performs better than the 12- and 4-km models for lower rainfall thresholds. For higher thresholds the 4-km model scores almost as well as the 1-km model, and both do better than the 12-km model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrospinning is a technique that involves the production of nanoscale to microscale sized polymer fibres through the application of an electric field to a droplet of polymer solution passed through a spinneret tip. This chapter considers the optimisisation of the electrospinning process and in particular the variation with solution concentration. We show the strong connection between overlapping chains and the successful spinning of fibres. We use small-angle neutron scattering to evaluate the molecular conformations in the solutions and in the fibres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A statistical model is derived relating the diurnal variation of sea surface temperature (SST) to the net surface heat flux and surface wind speed from a numerical weather prediction (NWP) model. The model is derived using fluxes and winds from the European Centre for Medium-Range Weather Forecasting (ECMWF) NWP model and SSTs from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). In the model, diurnal warming has a linear dependence on the net surface heat flux integrated since (approximately) dawn and an inverse quadratic dependence on the maximum of the surface wind speed in the same period. The model coefficients are found by matching, for a given integrated heat flux, the frequency distributions of the maximum wind speed and the observed warming. Diurnal cooling, where it occurs, is modelled as proportional to the integrated heat flux divided by the heat capacity of the seasonal mixed layer. The model reproduces the statistics (mean, standard deviation, and 95-percentile) of the diurnal variation of SST seen by SEVIRI and reproduces the geographical pattern of mean warming seen by the Advanced Microwave Scanning Radiometer (AMSR-E). We use the functional dependencies in the statistical model to test the behaviour of two physical model of diurnal warming that display contrasting systematic errors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerical Weather Prediction (NWP) fields are used to assist the detection of cloud in satellite imagery. Simulated observations based on NWP are used within a framework based on Bayes' theorem to calculate a physically-based probability of each pixel with an imaged scene being clear or cloudy. Different thresholds can be set on the probabilities to create application-specific cloud-masks. Here, this is done over both land and ocean using night-time (infrared) imagery. We use a validation dataset of difficult cloud detection targets for the Spinning Enhanced Visible and Infrared Imager (SEVIRI) achieving true skill scores of 87% and 48% for ocean and land, respectively using the Bayesian technique, compared to 74% and 39%, respectively for the threshold-based techniques associated with the validation dataset.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerical Weather Prediction (NWP) fields are used to assist the detection of cloud in satellite imagery. Simulated observations based on NWP are used within a framework based on Bayes' theorem to calculate a physically-based probability of each pixel with an imaged scene being clear or cloudy. Different thresholds can be set on the probabilities to create application-specific cloud masks. Here, the technique is shown to be suitable for daytime applications over land and sea, using visible and near-infrared imagery, in addition to thermal infrared. We use a validation dataset of difficult cloud detection targets for the Spinning Enhanced Visible and Infrared Imager (SEVIRI) achieving true skill scores of 89% and 73% for ocean and land, respectively using the Bayesian technique, compared to 90% and 70%, respectively for the threshold-based techniques associated with the validation dataset.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optimal estimation (OE) is applied as a technique for retrieving sea surface temperature (SST) from thermal imagery obtained by the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) on Meteosat 9. OE requires simulation of observations as part of the retrieval process, and this is done here using numerical weather prediction fields and a fast radiative transfer model. Bias correction of the simulated brightness temperatures (BTs) is found to be a necessary step before retrieval, and is achieved by filtered averaging of simulations minus observations over a time period of 20 days and spatial scale of 2.5° in latitude and longitude. Throughout this study, BT observations are clear-sky averages over cells of size 0.5° in latitude and longitude. Results for the OE SST are compared to results using a traditional non-linear retrieval algorithm (“NLSST”), both validated against a set of 30108 night-time matches with drifting buoy observations. For the OE SST the mean difference with respect to drifter SSTs is − 0.01 K and the standard deviation is 0.47 K, compared to − 0.38 K and 0.70 K respectively for the NLSST algorithm. Perhaps more importantly, systematic biases in NLSST with respect to geographical location, atmospheric water vapour and satellite zenith angle are greatly reduced for the OE SST. However, the OE SST is calculated to have a lower sensitivity of retrieved SST to true SST variations than the NLSST. This feature would be a disadvantage for observing SST fronts and diurnal variability, and raises questions as to how best to exploit OE techniques at SEVIRI's full spatial resolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The self-assembly of proteins and peptides into b-sheet-rich amyloid fibers is a process that has gained notoriety because of its association with human diseases and disorders. Spontaneous self-assembly of peptides into nonfibrillar supramolecular structures can also provide a versatile and convenient mechanism for the bottom-up design of biocompatible materials with functional properties favoring a wide range of practical applications.[1] One subset of these fascinating and potentially useful nanoscale constructions are the peptide nanotubes, elongated cylindrical structures with a hollow center bounded by a thin wall of peptide molecules.[2] A formidable challenge in optimizing and harnessing the properties of nanotube assemblies is to gain atomistic insight into their architecture, and to elucidate precisely how the tubular morphology is constructed from the peptide building blocks. Some of these fine details have been elucidated recently with the use of magic-angle-spinning (MAS) solidstate NMR (SSNMR) spectroscopy.[3] MAS SSNMR measurements of chemical shifts and through-space interatomic distances provide constraints on peptide conformation (e.g., b-strands and turns) and quaternary packing. We describe here a new application of a straightforward SSNMR technique which, when combined with FTIR spectroscopy, reports quantitatively on the orientation of the peptide molecules within the nanotube structure, thereby providing an additional structural constraint not accessible to MAS SSNMR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pig is a single-stomached omnivorous mammal and is an important model of human disease and nutrition. As such, it is necessary to establish a metabolic framework from which pathology-based variation can be compared. Here, a combination of one and two-dimensional 1H and 13C nuclear magnetic resonance spectroscopy (NMR) and high-resolution magic angle spinning (HR-MAS) NMR was used to provide a systems overview of porcine metabolism via characterisation of the urine, serum, liver and kidney metabolomes. The metabolites observed in each of these biological compartments were found to be qualitatively comparable to the metabolic signature of the same biological matrices in humans and rodents. The data were modelled using a combination of principal components analysis and Venn diagram mapping. Urine represented the most metabolically distinct biological compartment studied, with a relatively greater number of NMR detectable metabolites present, many of which are implicated in gut-microbial co-metabolic processes. The major interspecies differences observed were in the phase II conjugation of extra-genomic metabolites; the pig was observed to conjugate p-cresol, a gut microbial metabolite of tyrosine, with glucuronide rather than sulfate as seen in man. These observations are important to note when considering the translatability of experimental data derived from porcine models.