307 resultados para Spiders
Resumo:
Latest issue consulted: 1955.
Resumo:
Lebenslauf.
Resumo:
Lebenslauf.
Resumo:
"Index bibliographique": p. 613-615.
Resumo:
Added title-page: Bau und Leben der Spinnen. Nebst Uebersicht und specieller Beschreibung der Schweizer Spinnen.
Resumo:
First ed. published London: John Harris, [1827].
Resumo:
Name and address on front pastedown.
Resumo:
--VI. Insects, pt. II. Hymenoptera continued (Tubilifera and Aculeata), Coleoptera, Strepsiptera, Lepidotera, Diptera, Aphaniptera, Thysanoptera, Hemiptera, Anoplura. By David Sharp. 1901.--VII. Hemichordata, by S.F. Harmer. Ascidians and Amphioxus, by W.A. Herdman. Fishes (exclusive of th systematic account of Teleostei) by T.W. Bridge. Fishes (systematic account of Teleostei) by G.A. Bonlenger. 1904.--VIII. Amphibia and reptiles, by Hans Gadow. 1901.--IX. Birds, by A.H. Evans. 1900--X. Mammalia, by F.E. Beddard. 1902.
Resumo:
Spiders are among the most abundant predators recorded in grain crops in Australia. They are voracious predators, and combined with their high abundance, may play an important role in the reduction of pest populations. The significance of spider assemblages as biological control agents of key pests such as Helicoverpa spp. in Australian agroecosystems is largely unknown. A thorough inventory was made of the spider fauna inhabiting unsprayed soybean fields at Gatton, south-east Queensland. One-hundred-and-two morphospecies from 28 families were collected using vacuum sampling and pitfall traps across two summer seasons (2000-01, 2001-02). No-choice feeding tests in the laboratory, using eggs and larvae of Helicoverpa armigera (Hubner) as prey, were used to ascertain the predatory potential of each spider group. The field-collected spider assemblage ate on average 2.4 (+/-0.7 standard error) to 5.0 (+/-0.8) eggs per 24 h per spider (10-25% of those available), depending on level of starvation. Clubionidae were the only spiders to readily consume eggs in the laboratory (mean of 18.4 +/- 1.5 eggs per starved spider and 8.2 +/- 3.9 per non-starved spider after 24 h). Starved spiders consumed 9.4 (+/- 0.1) first-instar larvae per 24 h per spider (90% of those available). This information was combined with field observations and literature from Australian and overseas studies to assess the potential of spider groups as predators of Helicoverpa spp. Lycosidae, Clubionidae, Oxyopidae, Salticidae and Thomisidae have the capacity to contribute to control of Helicoverpa spp.
Resumo:
Ballooning is a form of aerial movement practiced by most miniature and some adult spiders. Very few studies have investigated the composition and rate of spider ballooning in Australian agroecosystems. Water traps were used to compare ballooning rates in irrigated soybean crops and nearby non-crop areas in southeast Queensland over two summer seasons. The highest ballooning rate (14.8 spiders/m(2) per day) was recorded in a soybean field, non-crop areas (7.0 spiders/m(2) per day) and a dry land mungbean field (6.8 spiders/m(2) per day) having similar rates. Spider ballooning in soybean increased throughout the season and showed three peaks and intervening troughs. A similar pattern in ballooning peaks was observed in non-crop areas however the numbers were lower. Peaks in ballooning activity where synchronised across habitat types and some spider groups. Composition of the ballooning fauna was different from that of the ground-dwelling fauna, some families being present in both. Ballooning is an important behaviour in terms of population dynamics for a number of spider groups in soybean and the implications for pest control are discussed. (C) 2004 Elsevier BN. All rights reserved.
Resumo:
The observation that snakes and spiders are found faster among flowers and mushrooms than vice versa and that this search advantage is independent of set size supports the notion that fear-relevant stimuli are processed preferentially in a dedicated fear module. Experiment I replicated the faster identification of snakes and spiders but also found a set size effect in a blocked, but not in a mixed-trial, sequence. Experiment 2 failed to find faster identification of snake and spider deviants relative to other animals among flowers and mushrooms and provided evidence for a search advantage for pictures of animals, irrespective of their fear relevance. These findings suggest that results from the present visual search task cannot support the notion of preferential processing of fear relevance.
Resumo:
Objectives: To identify and demonstrate necrotizing dermatitis in infancy; an uncommon, puzzling syndrome, in which anecdotal reporting and personal experience indicates that one third of cases may require skin grafting. Much informed discussion about the pathogenesis of this distressing syndrome centres on the role of spider envenomation; and in particular on the speculative role of the Australian White-tailed spider, Lampona cylindrata. Methods: We present here six cases of necrotizing dermatitis treated surgically at the Royal Children's Hospital and Mater Children's Hospital in Brisbane over the period from 1991 to 1999. Clinical history, surgical details and pathological investigations were reviewed in each case. Microbiological investigation of necrotic ulcers included standard aerobic and anaerobic culture. Result: Nocardia and Staphylococcus were cultured in two cases, but no positive bites were witnessed and no spiders were identified by either the children or their parents. All cases were treated with silver sulphadiazine creme. Two of the infants required general anaesthesia, excision debridement and split skin grafting. The White-tailed spider, Lampona cylindrata, does not occur in Queensland, but Lampona murina does; neither species has necrotizing components in its venom. Circumstantial evidence is consistent with this syndrome being due to invertebrate envenomation, possibly following arachnid bites. Conclusion: In our experience there is insufficient evidence to impute a specific genus as the cause, at this stage of scientific knowledge. If the offending creature is a spider, we calculate that the syndrome of necrotizing dermatitis occurs in less than 1 in 5000 spider bites.
Resumo:
Many models have been advanced to suggest how different expressions of sociality have evolved and are maintained. However these models ignore the function of groups for the particular species in question. Here we present a new perspective on sociality where the function of the group takes a central role. We argue that sociality may have primarily a reproductive, protective, or foraging function, depending on whether it enhances the reproductive, protective or foraging aspect of the animal's life (sociality may serve a mixture of these functions). Different functions can potentially cause the development of the same social behaviour. By identifying which function influences a particular social behaviour we can determine how that social behaviour will change with changing conditions, and which models are most pertinent. To test our approach we examined spider sociality, which has often been seen as the poor cousin to insect sociality. By using our approach we found that the group characteristics of eusocial insects is largely governed by the reproductive function of their groups, while the group characteristics of social spiders is largely governed by the foraging function of the group. This means that models relevant to insects may not be relevant to spiders. It also explains why eusocial insects have developed a strict caste system while spider societies are more egalitarian. We also used our approach to explain the differences between different types of spider groups. For example, differences in the characteristics of colonial and kleptoparasitic groups can be explained by differences in foraging methods, while differences between colonial and cooperative spiders can be explained by the role of the reproductive function in the formation of cooperative spider groups. Although the interactions within cooperative spider colonies are largely those of a foraging society, demographic traits and colony dynamics are strongly influenced by the reproductive function. We argue that functional explanations help to understand the social structure of spider groups and therefore the evolutionary potential for speciation in social spiders.
Resumo:
This project identified a novel family of six 66-68 residue peptides from the venom of two Australian funnel-web spiders, Hadronyche sp. 20 and H. infensa: Orchid Beach (Hexathelidae: Atracinae), that appear to undergo N- and/or C-terminal post-translational modifications and conform to an ancestral protein fold. These peptides all show significant amino acid sequence homology to atracotoxin-Hvf17 (ACTX-Hvf17), a non-toxic peptide isolated from the venom of H. versuta, and a variety of AVIT family proteins including mamba intestinal toxin 1 (MIT1) and its mammalian and piscine orthologs prokineticin 1 (PK1) and prokineticin 2 PK2). These AVIT family proteins target prokineticin receptors involved in the sensitization of nociceptors and gastrointestinal smooth muscle activation. Given their sequence homology to MITI, we have named these spider venom peptides the MIT-like atracotoxin (ACTX) family. Using isolated rat stomach fundus or guinea-pia ileum organ bath preparations we have shown that the prototypical ACTX-Hvf17, at concentrations up to 1 mu M, did not stimulate smooth muscle contractility, nor did it inhibit contractions induced by human PK1 (hPK1). The peptide also lacked activity on other isolated smooth muscle preparations including rat aorta. Furthermore, a FLIPR Ca2+ flux assay using HEK293 cells expressing prokineticin receptors showed that ACTX-Hvf17 fails to activate or block hPK1 or hPK2 receptors. Therefore, while the MIT-like ACTX family appears to adopt the ancestral disulfide-directed beta-hairpin protein fold of MIT1, a motif believed to be shared by other AVIT family peptides, variations in the amino acid sequence and surface charge result in a loss of activity on prokineticin receptors. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Attentional bias to fear-relevant animals was assessed in 69 participants not preselected on self-reported anxiety with the use of a dot probe task showing pictures of snakes, spiders, mushrooms, and flowers. Probes that replaced the fear-relevant stimuli (snakes and spiders) were found faster than probes that replaced the non-fear-relevant stimuli, indicating an attentional bias in the entire sample. The bias was not correlated with self-reported state or trait anxiety or with general fearfulness. Participants reporting higher levels of spider fear showed an enhanced bias to spiders, but the bias remained significant in low scorers. The bias to snake pictures was not related to snake fear and was significant in high and low scorers. These results indicate preferential processing of fear-relevant stimuli in an unselected sample.