986 resultados para Spectrometer
Resumo:
Lasers play an important role for medical, sensoric and data storage devices. This thesis is focused on design, technology development, fabrication and characterization of hybrid ultraviolet Vertical-Cavity Surface-Emitting Lasers (UV VCSEL) with organic laser-active material and inorganic distributed Bragg reflectors (DBR). Multilayer structures with different layer thicknesses, refractive indices and absorption coefficients of the inorganic materials were studied using theoretical model calculations. During the simulations the structure parameters such as materials and thicknesses have been varied. This procedure was repeated several times during the design optimization process including also the feedback from technology and characterization. Two types of VCSEL devices were investigated. The first is an index coupled structure consisting of bottom and top DBR dielectric mirrors. In the space in between them is the cavity, which includes active region and defines the spectral gain profile. In this configuration the maximum electrical field is concentrated in the cavity and can destroy the chemical structure of the active material. The second type of laser is a so called complex coupled VCSEL. In this structure the active material is placed not only in the cavity but also in parts of the DBR structure. The simulations show that such a distribution of the active material reduces the required pumping power for reaching lasing threshold. High efficiency is achieved by substituting the dielectric material with high refractive index for the periods closer to the cavity. The inorganic materials for the DBR mirrors have been deposited by Plasma- Enhanced Chemical Vapor Deposition (PECVD) and Dual Ion Beam Sputtering (DIBS) machines. Extended optimizations of the technological processes have been performed. All the processes are carried out in a clean room Class 1 and Class 10000. The optical properties and the thicknesses of the layers are measured in-situ by spectroscopic ellipsometry and spectroscopic reflectometry. The surface roughness is analyzed by atomic force microscopy (AFM) and images of the devices are taken with scanning electron microscope (SEM). The silicon dioxide (SiO2) and silicon nitride (Si3N4) layers deposited by the PECVD machine show defects of the material structure and have higher absorption in the ultra violet range compared to ion beam deposition (IBD). This results in low reflectivity of the DBR mirrors and also reduces the optical properties of the VCSEL devices. However PECVD has the advantage that the stress in the layers can be tuned and compensated, in contrast to IBD at the moment. A sputtering machine Ionsys 1000 produced by Roth&Rau company, is used for the deposition of silicon dioxide (SiO2), silicon nitride (Si3N4), aluminum oxide (Al2O3) and zirconium dioxide (ZrO2). The chamber is equipped with main (sputter) and assisted ion sources. The dielectric materials were optimized by introducing additional oxygen and nitrogen into the chamber. DBR mirrors with different material combinations were deposited. The measured optical properties of the fabricated multilayer structures show an excellent agreement with the results of theoretical model calculations. The layers deposited by puttering show high compressive stress. As an active region a novel organic material with spiro-linked molecules is used. Two different materials have been evaporated by utilizing a dye evaporation machine in the clean room of the department Makromolekulare Chemie und Molekulare Materialien (mmCmm). The Spiro-Octopus-1 organic material has a maximum emission at the wavelength λemission = 395 nm and the Spiro-Pphenal has a maximum emission at the wavelength λemission = 418 nm. Both of them have high refractive index and can be combined with low refractive index materials like silicon dioxide (SiO2). The sputtering method shows excellent optical quality of the deposited materials and high reflection of the multilayer structures. The bottom DBR mirrors for all VCSEL devices were deposited by the DIBS machine, whereas the top DBR mirror deposited either by PECVD or by combination of PECVD and DIBS. The fabricated VCSEL structures were optically pumped by nitrogen laser at wavelength λpumping = 337 nm. The emission was measured by spectrometer. A radiation of the VCSEL structure at wavelength 392 nm and 420 nm is observed.
Resumo:
Optische Spektroskopie ist eine sehr wichtige Messtechnik mit einem hohen Potential für zahlreiche Anwendungen in der Industrie und Wissenschaft. Kostengünstige und miniaturisierte Spektrometer z.B. werden besonders für moderne Sensorsysteme “smart personal environments” benötigt, die vor allem in der Energietechnik, Messtechnik, Sicherheitstechnik (safety and security), IT und Medizintechnik verwendet werden. Unter allen miniaturisierten Spektrometern ist eines der attraktivsten Miniaturisierungsverfahren das Fabry Pérot Filter. Bei diesem Verfahren kann die Kombination von einem Fabry Pérot (FP) Filterarray und einem Detektorarray als Mikrospektrometer funktionieren. Jeder Detektor entspricht einem einzelnen Filter, um ein sehr schmales Band von Wellenlängen, die durch das Filter durchgelassen werden, zu detektieren. Ein Array von FP-Filter wird eingesetzt, bei dem jeder Filter eine unterschiedliche spektrale Filterlinie auswählt. Die spektrale Position jedes Bandes der Wellenlänge wird durch die einzelnen Kavitätshöhe des Filters definiert. Die Arrays wurden mit Filtergrößen, die nur durch die Array-Dimension der einzelnen Detektoren begrenzt werden, entwickelt. Allerdings erfordern die bestehenden Fabry Pérot Filter-Mikrospektrometer komplizierte Fertigungsschritte für die Strukturierung der 3D-Filter-Kavitäten mit unterschiedlichen Höhen, die nicht kosteneffizient für eine industrielle Fertigung sind. Um die Kosten bei Aufrechterhaltung der herausragenden Vorteile der FP-Filter-Struktur zu reduzieren, wird eine neue Methode zur Herstellung der miniaturisierten FP-Filtern mittels NanoImprint Technologie entwickelt und präsentiert. In diesem Fall werden die mehreren Kavitäten-Herstellungsschritte durch einen einzigen Schritt ersetzt, die hohe vertikale Auflösung der 3D NanoImprint Technologie verwendet. Seit dem die NanoImprint Technologie verwendet wird, wird das auf FP Filters basierende miniaturisierte Spectrometer nanospectrometer genannt. Ein statischer Nano-Spektrometer besteht aus einem statischen FP-Filterarray auf einem Detektorarray (siehe Abb. 1). Jeder FP-Filter im Array besteht aus dem unteren Distributed Bragg Reflector (DBR), einer Resonanz-Kavität und einen oberen DBR. Der obere und untere DBR sind identisch und bestehen aus periodisch abwechselnden dünnen dielektrischen Schichten von Materialien mit hohem und niedrigem Brechungsindex. Die optischen Schichten jeder dielektrischen Dünnfilmschicht, die in dem DBR enthalten sind, entsprechen einen Viertel der Design-Wellenlänge. Jeder FP-Filter wird einer definierten Fläche des Detektorarrays zugeordnet. Dieser Bereich kann aus einzelnen Detektorelementen oder deren Gruppen enthalten. Daher werden die Seitenkanal-Geometrien der Kavität aufgebaut, die dem Detektor entsprechen. Die seitlichen und vertikalen Dimensionen der Kavität werden genau durch 3D NanoImprint Technologie aufgebaut. Die Kavitäten haben Unterschiede von wenigem Nanometer in der vertikalen Richtung. Die Präzision der Kavität in der vertikalen Richtung ist ein wichtiger Faktor, der die Genauigkeit der spektralen Position und Durchlässigkeit des Filters Transmissionslinie beeinflusst.
Resumo:
Das Ziel der vorliegenden Arbeit war die Herstellung und Charakterisierung mikromechanisch durchstimmbarer, dielektrischer Fabry-Pérot-Filter im nahen Infrarot-Bereich bei einer Zentralwellenlänge von λc = 950 nm. Diese Bauelemente wurden auf Basis kostengünstiger Technologien realisiert, dank deren Entwicklung extreme Miniaturisierung und gleichzeitig hohe spektrale Anforderungen möglich sind. Der Vorteil solcher Filter liegt darin, dass sie direkt in einen Photodetektor integriert werden können und mit ganz wenigen Komponenten zu einem kompakten Spektrometermodul zusammengesetzt werden können. Die Baugröße ist nur durch die Größe des Photodetektors limitiert und die gesamte Intensität des einfallenden Lichts kann vorteilhaft auf eine einzelne Filtermembran des Fabry-Pérot-Filters fokussiert werden. Für den Filteraufbau werden zwei hochreflektierende, dielektrische DBR-Spiegel, ein organisches Opferschichtmaterial, welches zur Erzeugung einer Luftkavität im Filter dient, und zwei unterschiedliche Elektroden aus ITO und Aluminium verwendet. Die mikromechanische Auslenkung der freigelegten Filtermembran geschieht mittels elektrostatischer Aktuation, wobei auf diese Weise die Kavitätshöhe des Fabry-Pérot-Filters geändert wird und somit dieser im erforderlichen Spektralbereich optisch durchgestimmt wird. Das in dieser Arbeit gewählte Filterkonzept stellt eine Weiterentwicklung eines bereits bestehenden Filterkonzepts für den sichtbaren Spektralbereich dar. Zum Einen wurden in dieser Arbeit das vertikale und das laterale Design der Filterstrukturen geändert. Eine entscheidende Änderung lag im mikromechanisch beweglichen Teil des Fabry-Pérot-Filters. Dieser schließt den oberen DBR-Spiegel und ein aus dielektrischen Schichten und der oberen Aluminium-Elektrode bestehendes Membranhaltesystem ein, welches später durch Entfernung der Opferschicht freigelegt wird. Die Fläche des DBR-Spiegels wurde auf die Fläche der Filtermembran reduziert und auf dem Membranhaltesystem positioniert. Zum Anderen wurde im Rahmen dieser Arbeit der vertikale Schichtaufbau des Membranhaltesystems variiert und der Einfluss der gewählten Materialien auf die Krümmung der freistehenden Filterstrukturen, auf das Aktuationsverhalten und auf die spektralen Eigenschaften des gesamten Filters untersucht. Der Einfluss der mechanischen Eigenschaften dieser Materialien spielt nämlich eine bedeutende Rolle bei der Erhaltung der erforderlichen optischen Eigenschaften des gesamten Filters. Bevor Fabry-Pérot-Filter ausgeführt wurden, wurde die mechanische Spannung in den einzelnen Materialien des Membranhaltesystems bestimmt. Für die Messung wurde Substratkrümmungsmethode angewendet. Es wurde gezeigt, dass die Plasmaanregungsfrequenzen der plasmaunterstützten chemischen Gasphasenabscheidung bei einer Prozesstemperatur von 120 °C die mechanische Spannung von Si3N4 enorm beeinflussen. Diese Ergebnisse wurden im Membranhaltesystem umgesetzt, wobei verschiedene Filter mit unterschiedlichen mechanischen Eigenschaften des Membranhaltesystems gezeigt wurden. Darüber hinaus wurden optische Eigenschaften der Filter unter dem Einfluss des lateralen Designs der Filterstrukturen untersucht. Bei den realisierten Filtern wurden ein optischer Durchstimmbereich von ca. 70 nm und eine spektrale Auflösung von 5 nm erreicht. Die erreichte Intensität der Transmissionslinie liegt bei 45-60%. Diese Parameter haben für den späteren spektroskopischen Einsatz der realisierten Fabry-Pérot-Filter eine hohe Bedeutung. Die Anwendung soll erstmalig in einem „Proof of Concept“ stattfinden, wobei damit die Oberflächentemperatur eines GaAs-Wafers über die Messung der spektralen Lage seiner Bandlücke bestimmt werden kann.
Resumo:
IntraCavity Laser Absorption Spectroscopy (ICLAS) is a high-resolution, high sensitivity spectroscopic method capable of measuring line positions, linewidths, lineshapes, and absolute line intensities with a sensitivity that far exceeds that of a traditional multiple pass absorption cell or Fourier Transform spectrometer. From the fundamental knowledge obtained through these measurements, information about the underlying spectroscopy, dynamics, and kinetics of the species interrogated can be derived. The construction of an ICLA Spectrometer will be detailed, and the measurements utilizing ICLAS will be discussed, as well as the theory of operation and modifications of the experimental apparatus. Results include: i) Line intensities and collision-broadening coefficients of the A band of oxygen and previously unobserved, high J, rotational transitions of the A band, hot-band transitions, and transitions of isotopically substituted species. ii) High-resolution (0.013 cm-1) spectra of the second overtone of the OH stretch of trans-nitrous acid recorded between 10,230 and 10,350 cm-1. The spectra were analyzed to yield a complete set of rotational parameters and an absolute band intensity, and two groups of anharmonic perturbations were observed and analyzed. These findings are discussed in the context of the contribution of overtone-mediated processes to OH radical production in the lower atmosphere.
Resumo:
Spectra taken using the Spectroscopy in a Suitcase spectrometer sponsored by the RSC. Spectra taken during the University of Southampton's School of Chemistry Twilight outreach events 2015.
Resumo:
Ozone profiles from the Microwave Limb Sounder (MLS) onboard the Aura satellite of the NASA's Earth Observing System (EOS) were experimentally added to the European Centre for Medium-range Weather Forecasts (ECMWF) four-dimensional variational (4D-var) data assimilation system of version CY30R1, in which total ozone columns from Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY (SCIAMACHY) onboard the Envisat satellite and partial profiles from the Solar Backscatter Ultraviolet (SBUV/2) instrument onboard the NOAA-16 satellite have been operationally assimilated. As shown by results for the autumn of 2005, additional constraints from MLS data significantly improved the agreement of the analyzed ozone fields with independent observations throughout most of the stratosphere, owing to the daily near-global coverage and good vertical resolution of MLS observations. The largest impacts were seen in the middle and lower stratosphere, where model deficiencies could not be effectively corrected by the operational observations without the additional information on the ozone vertical distribution provided by MLS. Even in the upper stratosphere, where ozone concentrations are mainly determined by rapid chemical processes, dense and vertically resolved MLS data helped reduce the biases related to model deficiencies. These improvements resulted in a more realistic and consistent description of spatial and temporal variations in stratospheric ozone, as demonstrated by cases in the dynamically and chemically active regions. However, combined assimilation of the often discrepant ozone observations might lead to underestimation of tropospheric ozone. In addition, model deficiencies induced large biases in the upper stratosphere in the medium-range (5-day) ozone forecasts.
Resumo:
As part of its Data User Element programme, the European Space Agency funded the GlobMODEL project which aimed at investigating the scientific, technical, and organizational issues associated with the use and exploitation of remotely-sensed observations, particularly from new sounders. A pilot study was performed as a "demonstrator" of the GlobMODEL idea, based on the use of new data, with a strong European heritage, not yet assimilated operationally. Two parallel assimilation experiments were performed, using either total column ozone or ozone profiles retrieved at the Royal Netherlands Meteorological Institute (KNMI) from the Ozone Monitoring Instrument (OMI). In both cases, the impact of assimilating OMI data in addition to the total ozone columns from the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) on the European Centre for Medium Range Weather Forecasts (ECMWF) ozone analyses was assessed by means of independent measurements. We found that the impact of OMI total columns is mainly limited to the region between 20 and 80 hPa, and is particularly important at high latitudes in the Southern hemisphere where the stratospheric ozone transport and chemical depletion are generally difficult to model with accuracy. Furthermore, the assimilation experiments carried out in this work suggest that OMI DOAS (Differential Optical Absorption Spectroscopy) total ozone columns are on average larger than SCIAMACHY total columns by up to 3 DU, while OMI total columns derived from OMI ozone profiles are on average about 8 DU larger than SCIAMACHY total columns. At the same time, the demonstrator brought to light a number of issues related to the assimilation of atmospheric composition profiles, such as the shortcomings arising when the vertical resolution of the instrument is not properly accounted for in the assimilation. The GlobMODEL demonstrator accelerated scientific and operational utilization of new observations and its results - prompted ECMWF to start the operational assimilation of OMI total column ozone data.
Resumo:
Root exudates were collected over a 27 day period from defoliated and non-defoliated Lolium perenne L. plants grown under sterile conditions in microlysimeters. Eleven individual sugars, including both aldehyde and alcohol sugars, were identified and quantified with a gas chromatograph-mass spectrometer (GC-MS). There was no change in the number of sugars present between 7 and 27 days, but the exudation of alcohol sugars decreased rapidly at about day 12. Xylose and glucose were present in the largest amounts. Defoliation initially increased the total amount of sugars in the exudates, but continuous defoliation reduced total sugar exudation by 16% and induced changes in the exudation patterns of individual sugars. Defoliation enhanced exudation of erythritol, threitol, and xylitol, reduced exudation of glucose and arabitol, but had little effect on the amounts of other sugars exuded. The more complex 6 C, 5 OH aldehyde sugars, especially glucose, showed changes earlier and to a greater extent (17 days), than the 5 C, 4 OH (xylose and ribose) and 6 C 4 OH (fucose) aldehyde groups. These findings confirm the general finding that repeated defoliation reduces the quantity of total sugars exuded, but the pattern of release of individual sugars is complex and variable.
Resumo:
Airborne dust is of concern due to hazards in the localities affected by erosion, transport and deposition, but it is also of global concern due to uncertainties over its role in radiative forcing of climate. In order to model the environmental impact of dust, we need a better knowledge of sources and transport processes. Satellite remote sensing has been instrumental in providing this knowledge, through long time series of observations of atmospheric dust transport. Three remote sensing methodologies have been used, and are reviewed briefly in this paper. Firstly the use of observations from the Total Ozone Mapping Spectrometer (TOMS), secondly the use of the Infrared Difference Dust Index (IDDI) from Meterosat infrared data, thirdly the use of MODIS images from the rapid response system. These data have highlighted the major global sources of dust, mist of which are associated with endoreic drainage basins in deserts, which held lakes during Quaternary humid climate phases, and identified the Bodele Depression in Tchad as the dustiest place on Earth.
Resumo:
As improvements to the optical design of spectrometer and radiometer instruments evolve with advances in detector sensitivity, use of focal plane detector arrays and innovations in adaptive optics for large high altitude telescopes, interest in mid-infrared astronomy and remote sensing applications have been areas of progressive research in recent years. This research has promoted a number of developments in infrared coating performance, particularly by placing increased demands on the spectral imaging requirements of filters to precisely isolate radiation between discrete wavebands and improve photometric accuracy. The spectral design and construction of multilayer filters to accommodate these developments has subsequently been an area of challenging thin-film research, to achieve high spectral positioning accuracy, environmental durability and aging stability at cryogenic temperatures, whilst maximizing the far-infrared performance. In this paper we examine the design and fabrication of interference filters in instruments that utilize the mid-infrared N-band (6-15 µm) and Q-band (16-28 µm) atmospheric windows, together with a rationale for the selection of materials, deposition process, spectral measurements and assessment of environmental durability performance.
Resumo:
A new method of measuring the total conductivity of atmospheric air is described. It depends on determination of the electrical relaxation time of a horizontal wire, mounted between two insulators, which is initially grounded and then allowed to charge freely. The total air conductivity derived is compared with that from an ion mobility spectrometer. Results from the two techniques agreed to within 1.2 fS m(-1). (c) 2006 American Institute of Physics.
Resumo:
This paper aims to summarise the current performance of ozone data assimilation (DA) systems, to show where they can be improved, and to quantify their errors. It examines 11 sets of ozone analyses from 7 different DA systems. Two are numerical weather prediction (NWP) systems based on general circulation models (GCMs); the other five use chemistry transport models (CTMs). The systems examined contain either linearised or detailed ozone chemistry, or no chemistry at all. In most analyses, MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) ozone data are assimilated; two assimilate SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Chartography) observations instead. Analyses are compared to independent ozone observations covering the troposphere, stratosphere and lower mesosphere during the period July to November 2003. Biases and standard deviations are largest, and show the largest divergence between systems, in the troposphere, in the upper-troposphere/lower-stratosphere, in the upper-stratosphere and mesosphere, and the Antarctic ozone hole region. However, in any particular area, apart from the troposphere, at least one system can be found that agrees well with independent data. In general, none of the differences can be linked to the assimilation technique (Kalman filter, three or four dimensional variational methods, direct inversion) or the system (CTM or NWP system). Where results diverge, a main explanation is the way ozone is modelled. It is important to correctly model transport at the tropical tropopause, to avoid positive biases and excessive structure in the ozone field. In the southern hemisphere ozone hole, only the analyses which correctly model heterogeneous ozone depletion are able to reproduce the near-complete ozone destruction over the pole. In the upper-stratosphere and mesosphere (above 5 hPa), some ozone photochemistry schemes caused large but easily remedied biases. The diurnal cycle of ozone in the mesosphere is not captured, except by the one system that includes a detailed treatment of mesospheric chemistry. These results indicate that when good observations are available for assimilation, the first priority for improving ozone DA systems is to improve the models. The analyses benefit strongly from the good quality of the MIPAS ozone observations. Using the analyses as a transfer standard, it is seen that MIPAS is similar to 5% higher than HALOE (Halogen Occultation Experiment) in the mid and upper stratosphere and mesosphere (above 30 hPa), and of order 10% higher than ozonesonde and HALOE in the lower stratosphere (100 hPa to 30 hPa). Analyses based on SCIAMACHY total column are almost as good as the MIPAS analyses; analyses based on SCIAMACHY limb profiles are worse in some areas, due to problems in the SCIAMACHY retrievals.
Resumo:
[ 1] We have used a fully coupled chemistry-climate model (CCM), which generates its own wind and temperature quasi-biennial oscillation (QBO), to study the effect of coupling on the QBO and to examine the QBO signals in stratospheric trace gases, particularly ozone. Radiative coupling of the interactive chemistry to the underlying general circulation model tends to prolong the QBO period and to increase the QBO amplitude in the equatorial zonal wind in the lower and middle stratosphere. The model ozone QBO agrees well with Stratospheric Aerosol and Gas Experiment II and Total Ozone Mapping Spectrometer satellite observations in terms of vertical and latitudinal structure. The model captures the ozone QBO phase change near 28 km over the equator and the column phase change near +/- 15 degrees latitude. Diagnosis of the model chemical terms shows that variations in NOx are the main chemical driver of the O-3 QBO around 35 km, i.e., above the O-3 phase change.
Energy separation of neutrons scattered at small angles from silicon using time-of-flight techniques
Resumo:
The time-of-flight technique is used on a small-angle neutron scattering instrument to separate the energies of the scattered neutrons, in order to determine the origin of the temperature-dependent scattering observed from silicon at Q > similar to 0.1 angstrom(-1). A quantitative analysis of the results in comparison with the phonon dispersion curves, determined by Dolling using a triple-axis neutron spectrometer, shows that the temperature-dependent scattering can be understood in terms of Umklapp processes whereby neutrons gain energy from phonons.
Resumo:
The spatial distribution of aerosol chemical composition and the evolution of the Organic Aerosol (OA) fraction is investigated based upon airborne measurements of aerosol chemical composition in the planetary boundary layer across Europe. Sub-micron aerosol chemical composition was measured using a compact Time-of-Flight Aerosol Mass Spectrometer (cToF-AMS). A range of sampling conditions were evaluated, including relatively clean background conditions, polluted conditions in North-Western Europe and the near-field to far-field outflow from such conditions. Ammonium nitrate and OA were found to be the dominant chemical components of the sub-micron aerosol burden, with mass fractions ranging from 20--50% each. Ammonium nitrate was found to dominate in North-Western Europe during episodes of high pollution, reflecting the enhanced NO_x and ammonia sources in this region. OA was ubiquitous across Europe and concentrations generally exceeded sulphate by 30--160%. A factor analysis of the OA burden was performed in order to probe the evolution across this large range of spatial and temporal scales. Two separate Oxygenated Organic Aerosol (OOA) components were identified; one representing an aged-OOA, termed Low Volatility-OOA and another representing fresher-OOA, termed Semi Volatile-OOA on the basis of their mass spectral similarity to previous studies. The factors derived from different flights were not chemically the same but rather reflect the range of OA composition sampled during a particular flight. Significant chemical processing of the OA was observed downwind of major sources in North-Western Europe, with the LV-OOA component becoming increasingly dominant as the distance from source and photochemical processing increased. The measurements suggest that the aging of OA can be viewed as a continuum, with a progression from a less oxidised, semi-volatile component to a highly oxidised, less-volatile component. Substantial amounts of pollution were observed far downwind of continental Europe, with OA and ammonium nitrate being the major constituents of the sub-micron aerosol burden. Such anthropogenically perturbed air masses can significantly perturb regional climate far downwind of major source regions.