926 resultados para Spatial data
Resumo:
Background: Infant mortality is an important measure of human development, related to the level of welfare of a society. In order to inform public policy, various studies have tried to identify the factors that influence, at an aggregated level, infant mortality. The objective of this paper is to analyze the regional pattern of infant mortality in Brazil, evaluating the effect of infrastructure, socio-economic, and demographic variables to understand its distribution across the country. Methods: Regressions including socio-economic and living conditions variables are conducted in a structure of panel data. More specifically, a spatial panel data model with fixed effects and a spatial error autocorrelation structure is used to help to solve spatial dependence problems. The use of a spatial modeling approach takes into account the potential presence of spillovers between neighboring spatial units. The spatial units considered are Minimum Comparable Areas, defined to provide a consistent definition across Census years. Data are drawn from the 1980, 1991 and 2000 Census of Brazil, and from data collected by the Ministry of Health (DATASUS). In order to identify the influence of health care infrastructure, variables related to the number of public and private hospitals are included. Results: The results indicate that the panel model with spatial effects provides the best fit to the data. The analysis confirms that the provision of health care infrastructure and social policy measures (e. g. improving education attainment) are linked to reduced rates of infant mortality. An original finding concerns the role of spatial effects in the analysis of IMR. Spillover effects associated with health infrastructure and water and sanitation facilities imply that there are regional benefits beyond the unit of analysis. Conclusions: A spatial modeling approach is important to produce reliable estimates in the analysis of panel IMR data. Substantively, this paper contributes to our understanding of the physical and social factors that influence IMR in the case of a developing country.
Resumo:
A procedure has been proposed by Ciotti and Bricaud (2006) to retrieve spectral absorption coefficients of phytoplankton and colored detrital matter (CDM) from satellite radiance measurements. This was also the first procedure to estimate a size factor for phytoplankton, based on the shape of the retrieved algal absorption spectrum, and the spectral slope of CDM absorption. Applying this method to the global ocean color data set acquired by SeaWiFS over twelve years (1998-2009), allowed for a comparison of the spatial variations of chlorophyll concentration ([Chl]), algal size factor (S-f), CDM absorption coefficient (a(cdm)) at 443 nm, and spectral slope of CDM absorption (S-cdm). As expected, correlations between the derived parameters were characterized by a large scatter at the global scale. We compared temporal variability of the spatially averaged parameters over the twelve-year period for three oceanic areas of biogeochemical importance: the Eastern Equatorial Pacific, the North Atlantic and the Mediterranean Sea. In all areas, both S-f and a(cdm)(443) showed large seasonal and interannual variations, generally correlated to those of algal biomass. The CDM maxima appeared in some occasions to last longer than those of [Chl]. The spectral slope of CDM absorption showed very large seasonal cycles consistent with photobleaching, challenging the assumption of a constant slope commonly used in bio-optical models. In the Equatorial Pacific, the seasonal cycles of [Chl], S-f, a(cdm)(443) and S-cdm, as well as the relationships between these parameters, were strongly affected by the 1997-98 El Ni o/La Ni a event.
Resumo:
Functional neuroimaging techniques enable investigations into the neural basis of human cognition, emotions, and behaviors. In practice, applications of functional magnetic resonance imaging (fMRI) have provided novel insights into the neuropathophysiology of major psychiatric,neurological, and substance abuse disorders, as well as into the neural responses to their treatments. Modern activation studies often compare localized task-induced changes in brain activity between experimental groups. One may also extend voxel-level analyses by simultaneously considering the ensemble of voxels constituting an anatomically defined region of interest (ROI) or by considering means or quantiles of the ROI. In this work we present a Bayesian extension of voxel-level analyses that offers several notable benefits. First, it combines whole-brain voxel-by-voxel modeling and ROI analyses within a unified framework. Secondly, an unstructured variance/covariance for regional mean parameters allows for the study of inter-regional functional connectivity, provided enough subjects are available to allow for accurate estimation. Finally, an exchangeable correlation structure within regions allows for the consideration of intra-regional functional connectivity. We perform estimation for our model using Markov Chain Monte Carlo (MCMC) techniques implemented via Gibbs sampling which, despite the high throughput nature of the data, can be executed quickly (less than 30 minutes). We apply our Bayesian hierarchical model to two novel fMRI data sets: one considering inhibitory control in cocaine-dependent men and the second considering verbal memory in subjects at high risk for Alzheimer’s disease. The unifying hierarchical model presented in this manuscript is shown to enhance the interpretation content of these data sets.
Resumo:
Vietnam has developed rapidly over the past 15 years. However, progress was not uniformly distributed across the country. Availability, adequate visualization and analysis of spatially explicit data on socio-economic and environmental aspects can support both research and policy towards sustainable development. Applying appropriate mapping techniques allows gleaning important information from tabular socio-economic data. Spatial analysis of socio-economic phenomena can yield insights into locally-specifi c patterns and processes that cannot be generated by non-spatial applications. This paper presents techniques and applications that develop and analyze spatially highly disaggregated socioeconomic datasets. A number of examples show how such information can support informed decisionmaking and research in Vietnam.
Resumo:
The objectives of this study were to describe the spatio-temporal pattern of an epidemic of highly pathogenic avian influenza (HPAI) in Vietnam and to identify potential risk factors for the introduction and maintenance of infection within the poultry population. The results indicate that during the time period 2004–early 2006 a sequence of three epidemic waves occurred in Vietnam as distinct spatial and temporal clusters. The risk of outbreak occurrence increased with a greater percentage of rice paddy fields, increasing domestic water bird and chicken density. It increased with reducing distance to higher population density aggregations, and in the third epidemic wave with increasing percentage of aquaculture. The findings indicate that agri-livestock farming systems involving domestic water birds and rice production in river delta areas are important for the maintenance and spread of infection. While the government’s control measures appear to have been effective in the South and Central parts of Vietnam, it is likely that in the North of Vietnam the vaccination campaign led to transmission of infection which was subsequently brought under control.
Impact of Orthorectification and Spatial Sampling on Maximum NDVI Composite Data in Mountain Regions
Resumo:
This paper examines how the geospatial accuracy of samples and sample size influence conclusions from geospatial analyses. It does so using the example of a study investigating the global phenomenon of large-scale land acquisitions and the socio-ecological characteristics of the areas they target. First, we analysed land deal datasets of varying geospatial accuracy and varying sizes and compared the results in terms of land cover, population density, and two indicators for agricultural potential: yield gap and availability of uncultivated land that is suitable for rainfed agriculture. We found that an increase in geospatial accuracy led to a substantial and greater change in conclusions about the land cover types targeted than an increase in sample size, suggesting that using a sample of higher geospatial accuracy does more to improve results than using a larger sample. The same finding emerged for population density, yield gap, and the availability of uncultivated land suitable for rainfed agriculture. Furthermore, the statistical median proved to be more consistent than the mean when comparing the descriptive statistics for datasets of different geospatial accuracy. Second, we analysed effects of geospatial accuracy on estimations regarding the potential for advancing agricultural development in target contexts. Our results show that the target contexts of the majority of land deals in our sample whose geolocation is known with a high level of accuracy contain smaller amounts of suitable, but uncultivated land than regional- and national-scale averages suggest. Consequently, the more target contexts vary within a country, the more detailed the spatial scale of analysis has to be in order to draw meaningful conclusions about the phenomena under investigation. We therefore advise against using national-scale statistics to approximate or characterize phenomena that have a local-scale impact, particularly if key indicators vary widely within a country.
Resumo:
Spatial variability of Vertisol properties is relevant for identifying those zones with physical degradation. In this sense, one has to face the problem of identifying the origin and distribution of spatial variability patterns. The objectives of the present work were (i) to quantify the spatial structure of different physical properties collected from a Vertisol, (ii) to search for potential correlations between different spatial patterns and (iii) to identify relevant components through multivariate spatial analysis. The study was conducted on a Vertisol (Typic Hapludert) dedicated to sugarcane (Saccharum officinarum L.) production during the last sixty years. We used six soil properties collected from a squared grid (225 points) (penetrometer resistance (PR), total porosity, fragmentation dimension (Df), vertical electrical conductivity (ECv), horizontal electrical conductivity (ECh) and soil water content (WC)). All the original data sets were z-transformed before geostatistical analysis. Three different types of semivariogram models were necessary for fitting individual experimental semivariograms. This suggests the different natures of spatial variability patterns. Soil water content rendered the largest nugget effect (C0 = 0.933) while soil total porosity showed the largest range of spatial correlation (A = 43.92 m). The bivariate geostatistical analysis also rendered significant cross-semivariance between different paired soil properties. However, four different semivariogram models were required in that case. This indicates an underlying co-regionalization between different soil properties, which is of interest for delineating management zones within sugarcane fields. Cross-semivariograms showed larger correlation ranges than individual, univariate, semivariograms (A ≥ 29 m). All the findings were supported by multivariate spatial analysis, which showed the influence of soil tillage operations, harvesting machinery and irrigation water distribution on the status of the investigated area.
Resumo:
Nowadays, organizations have plenty of data stored in DB databases, which contain invaluable information. Decision Support Systems DSS provide the support needed to manage this information and planning médium and long-term ?the modus operandi? of these organizations. Despite the growing importance of these systems, most proposals do not include its total evelopment, mostly limiting itself on the development of isolated parts, which often have serious integration problems. Hence, methodologies that include models and processes that consider every factor are necessary. This paper will try to fill this void as it proposes an approach for developing spatial DSS driven by the development of their associated Data Warehouse DW, without forgetting its other components. To the end of framing the proposal different Engineering Software focus (The Software Engineering Process and Model Driven Architecture) are used, and coupling with the DB development methodology, (and both of them adapted to DW peculiarities). Finally, an example illustrates the proposal.
Resumo:
This work was financially supported by the German Federal Ministry of Food and Agriculture (BMEL) through the Federal Office for Agriculture and Food (BLE), (2851ERA01J). FT and RPR were supported by FACCE MACSUR (3200009600) through the Finnish Ministry of Agriculture and Forestry (MMM). EC, HE and EL were supported by The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (220-2007-1218) and by the strategic funding ‘Soil-Water-Landscape’ from the faculty of Natural Resources and Agricultural Sciences (Swedish University of Agricultural Sciences) and thank professor P-E Jansson (Royal Institute of Technology, Stockholm) for support. JC, HR and DW thank the INRA ACCAF metaprogramm for funding and Eric Casellas from UR MIAT INRA for support. CB was funded by the Helmholtz project “REKLIM—Regional Climate Change”. CK was funded by the HGF Alliance “Remote Sensing and Earth System Dynamics” (EDA). FH was funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) under the Grant FOR1695. FE and SS acknowledge support by the German Science Foundation (project EW 119/5-1). HH, GZ, SS, TG and FE thank Andreas Enders and Gunther Krauss (INRES, University of Bonn) for support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Resumo:
The number of distressed manufacturing firms increased sharply during recessionary phase 2009-13. Financial indebtness traditionally plays a key role in assessing firm solvency but contagion effects that originate from the supply chain are usually neglected in literature. Firm interconnections, captured via the trade credit channel, represent a primary vehicle of individual shocks’ propagation, especially during an economic downturn, when liquidity tensions arise. A representative sample of 11,920 Italian manufacturing firms is considered to model a two-step econometric design, where chain reactions in terms of trade credit accumulation (i.e. default of payments to suppliers) are primarily analyzed by resorting to a spatial autoregressive approach (SAR). Spatial interactions are modeled based on a unique dataset of firm-to-firm transactions registered before the outbreak of the crisis. The second step in instead a binary outcome model where trade credit chains are considered together with data on the bank-firm relationship to assess determinants of distress likelihoods in 2009-13. Results show that outstanding trade debt is affected by the liquidity position of a firm and by positive spatial effects. Trade credit chain reactions are found to exert, in turn, a positive impact on distress likelihoods during the crisis. The latter effect is comparable in magnitude to the one exerted by individual financial rigidity, and stresses the importance to include complex interactions between firms in the analysis of the solvency behavior.