888 resultados para Spatial Data Infrastructure


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Projecte de recerca elaborat a partir d’una estada a la National Oceanography Centre of Southampton (NOCS), Gran Bretanya, entre maig i juliol del 2006. La possibilitat d’obtenir una estimació precissa de la salinitat marina (SSS) és important per a investigar i predir l’extensió del fenòmen del canvi climàtic. La missió Soil Moisture and Ocean Salinity (SMOS) va ser seleccionada per l’Agència Espacial Europea (ESA) per a obtenir mapes de salinitat de la superfície marina a escala global i amb un temps de revisita petit. Abans del llençament de SMOS es preveu l’anàlisi de la variabilitat horitzontal de la SSS i del potencial de les dades recuperades a partir de mesures de SMOS per a reproduir comportaments oceanogràfics coneguts. L’objectiu de tot plegat és emplenar el buit existent entre les fonts de dades d’entrada/auxiliars fiables i les eines desenvolupades per a simular i processar les dades adquirides segons la configuració de SMOS. El SMOS End-to-end Performance Simulator (SEPS) és un simulador adhoc desenvolupat per la Universitat Politècnica de Catalunya (UPC) per a generar dades segons la configuració de SMOS. Es va utilitzar dades d’entrada a SEPS procedents del projecte Ocean Circulation and Climate Advanced Modeling (OCCAM), utilitzat al NOCS, a diferents resolucions espacials. Modificant SEPS per a poder fer servir com a entrada les dades OCCAM es van obtenir dades de temperatura de brillantor simulades durant un mes amb diferents observacions ascendents que cobrien la zona seleccionada. Les tasques realitzades durant l’estada a NOCS tenien la finalitat de proporcionar una tècnica fiable per a realitzar la calibració externa i per tant cancel•lar el bias, una metodologia per a promitjar temporalment les diferents adquisicions durant les observacions ascendents, i determinar la millor configuració de la funció de cost abans d’explotar i investigar les posibiltats de les dades SEPS/OCCAM per a derivar la SSS recuperada amb patrons d’alta resolució.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper examines the relationship between the level of public infrastructure and the level of productivity using panel data for the Spanish provinces over the period 1984-2004, a period which is particularly relevant due to the substantial changes occurring in the Spanish economy at that time. The underlying model used for the data analysis is based on the wage equation, which is one of a handful of simultaneous equations which when satisfied correspond to the short-run equilibrium of New Economic Geography theory. This is estimated using a spatial panel model with fixed time and province effects, so that unmodelled space and time constant sources of heterogeneity are eliminated. The model assumes that productivity depends on the level of educational attainment and the public capital stock endowment of each province. The results show that although changes in productivity are positively associated with changes in public investment within the same province, there is a negative relationship between productivity changes and changes in public investment in other regions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Suburbanization is changing the urban spatial structure and less monocentric metropolitan regions are becoming the new urban reality. Focused only on centers, most works have studied these spatial changes neglecting the role of transport infrastructure and its related location model, the “accessibility city”, in which employment and population concentrate in low-density settlements and close to transport infrastructure. For the case of Barcelona, we consider this location model and study the population spatial structure between 1991 and 2006. The results reveal a mix between polycentricity and the accessibility city, with movements away from the main centers, but close to the transport infrastructure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A version of Matheron’s discrete Gaussian model is applied to cell composition data.The examples are for map patterns of felsic metavolcanics in two different areas. Q-Qplots of the model for cell values representing proportion of 10 km x 10 km cell areaunderlain by this rock type are approximately linear, and the line of best fit can be usedto estimate the parameters of the model. It is also shown that felsic metavolcanics in theAbitibi area of the Canadian Shield can be modeled as a fractal

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The increasing volume of data describing humandisease processes and the growing complexity of understanding, managing, and sharing such data presents a huge challenge for clinicians and medical researchers. This paper presents the@neurIST system, which provides an infrastructure for biomedical research while aiding clinical care, by bringing together heterogeneous data and complex processing and computing services. Although @neurIST targets the investigation and treatment of cerebral aneurysms, the system’s architecture is generic enough that it could be adapted to the treatment of other diseases.Innovations in @neurIST include confining the patient data pertaining to aneurysms inside a single environment that offers cliniciansthe tools to analyze and interpret patient data and make use of knowledge-based guidance in planning their treatment. Medicalresearchers gain access to a critical mass of aneurysm related data due to the system’s ability to federate distributed informationsources. A semantically mediated grid infrastructure ensures that both clinicians and researchers are able to seamlessly access andwork on data that is distributed across multiple sites in a secure way in addition to providing computing resources on demand forperforming computationally intensive simulations for treatment planning and research.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

1. Aim - Concerns over how global change will influence species distributions, in conjunction with increased emphasis on understanding niche dynamics in evolutionary and community contexts, highlight the growing need for robust methods to quantify niche differences between or within taxa. We propose a statistical framework to describe and compare environmental niches from occurrence and spatial environmental data.¦2. Location - Europe, North America, South America¦3. Methods - The framework applies kernel smoothers to densities of species occurrence in gridded environmental space to calculate metrics of niche overlap and test hypotheses regarding niche conservatism. We use this framework and simulated species with predefined distributions and amounts of niche overlap to evaluate several ordination and species distribution modeling techniques for quantifying niche overlap. We illustrate the approach with data on two well-studied invasive species.¦4. Results - We show that niche overlap can be accurately detected with the framework when variables driving the distributions are known. The method is robust to known and previously undocumented biases related to the dependence of species occurrences on the frequency of environmental conditions that occur across geographic space. The use of a kernel smoother makes the process of moving from geographical space to multivariate environmental space independent of both sampling effort and arbitrary choice of resolution in environmental space. However, the use of ordination and species distribution model techniques for selecting, combining and weighting variables on which niche overlap is calculated provide contrasting results.¦5. Main conclusions - The framework meets the increasing need for robust methods to quantify niche differences. It is appropriate to study niche differences between species, subspecies or intraspecific lineages that differ in their geographical distributions. Alternatively, it can be used to measure the degree to which the environmental niche of a species or intraspecific lineage has changed over time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The proposal to work on this final project came after several discussions held with Dr. Elzbieta Malinowski Gadja, who in 2008 published the book entitled Advanced Data Warehouse Design: From Conventional to Spatial and Temporal Applications (Data-Centric Systems and Applications). The project was carried out under the technical supervision of Dr. Malinowski and the direct beneficiary was the University of Costa Rica (UCR) where Dr. Malinowski is a professor at the Department of Computer Science and Informatics. The purpose of this project was twofold: First, to translate chapter III of said book with the intention of generating educational material for the use of the UCR and, second, to venture in the field of technical translation related to data warehouse. For the first component, the goal was to generate a final product that would eventually serve as an educational tool for the post-graduate courses of the UCR. For the second component, this project allowed me to acquire new skills and put into practice techniques that have helped me not only to perfom better in my current job as an Assistant Translator of the Inter-American BAnk (IDB), but also to use them in similar projects. The process was lenggthy and required torough research and constant communication with the author. The investigation focused on the search of terms and definitions to prepare the glossary, which was the basis to start the translation project. The translation process itself was carried out by phases, so that comments and corrections by the author could be taken into account in subsequent stages. Later, based on the glossary and the translated text, illustrations had been created in the Visio software were translated. In addition to the technical revision by the author, professor Carme Mangiron was in charge of revising the non-technical text. The result was a high-quality document that is currently used as reference and study material by the Department of Computer Science and Informatics of Costa Rica.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present research deals with an important public health threat, which is the pollution created by radon gas accumulation inside dwellings. The spatial modeling of indoor radon in Switzerland is particularly complex and challenging because of many influencing factors that should be taken into account. Indoor radon data analysis must be addressed from both a statistical and a spatial point of view. As a multivariate process, it was important at first to define the influence of each factor. In particular, it was important to define the influence of geology as being closely associated to indoor radon. This association was indeed observed for the Swiss data but not probed to be the sole determinant for the spatial modeling. The statistical analysis of data, both at univariate and multivariate level, was followed by an exploratory spatial analysis. Many tools proposed in the literature were tested and adapted, including fractality, declustering and moving windows methods. The use of Quan-tité Morisita Index (QMI) as a procedure to evaluate data clustering in function of the radon level was proposed. The existing methods of declustering were revised and applied in an attempt to approach the global histogram parameters. The exploratory phase comes along with the definition of multiple scales of interest for indoor radon mapping in Switzerland. The analysis was done with a top-to-down resolution approach, from regional to local lev¬els in order to find the appropriate scales for modeling. In this sense, data partition was optimized in order to cope with stationary conditions of geostatistical models. Common methods of spatial modeling such as Κ Nearest Neighbors (KNN), variography and General Regression Neural Networks (GRNN) were proposed as exploratory tools. In the following section, different spatial interpolation methods were applied for a par-ticular dataset. A bottom to top method complexity approach was adopted and the results were analyzed together in order to find common definitions of continuity and neighborhood parameters. Additionally, a data filter based on cross-validation was tested with the purpose of reducing noise at local scale (the CVMF). At the end of the chapter, a series of test for data consistency and methods robustness were performed. This lead to conclude about the importance of data splitting and the limitation of generalization methods for reproducing statistical distributions. The last section was dedicated to modeling methods with probabilistic interpretations. Data transformation and simulations thus allowed the use of multigaussian models and helped take the indoor radon pollution data uncertainty into consideration. The catego-rization transform was presented as a solution for extreme values modeling through clas-sification. Simulation scenarios were proposed, including an alternative proposal for the reproduction of the global histogram based on the sampling domain. The sequential Gaussian simulation (SGS) was presented as the method giving the most complete information, while classification performed in a more robust way. An error measure was defined in relation to the decision function for data classification hardening. Within the classification methods, probabilistic neural networks (PNN) show to be better adapted for modeling of high threshold categorization and for automation. Support vector machines (SVM) on the contrary performed well under balanced category conditions. In general, it was concluded that a particular prediction or estimation method is not better under all conditions of scale and neighborhood definitions. Simulations should be the basis, while other methods can provide complementary information to accomplish an efficient indoor radon decision making.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Data characteristics and species traits are expected to influence the accuracy with which species' distributions can be modeled and predicted. We compare 10 modeling techniques in terms of predictive power and sensitivity to location error, change in map resolution, and sample size, and assess whether some species traits can explain variation in model performance. We focused on 30 native tree species in Switzerland and used presence-only data to model current distribution, which we evaluated against independent presence-absence data. While there are important differences between the predictive performance of modeling methods, the variance in model performance is greater among species than among techniques. Within the range of data perturbations in this study, some extrinsic parameters of data affect model performance more than others: location error and sample size reduced performance of many techniques, whereas grain had little effect on most techniques. No technique can rescue species that are difficult to predict. The predictive power of species-distribution models can partly be predicted from a series of species characteristics and traits based on growth rate, elevational distribution range, and maximum elevation. Slow-growing species or species with narrow and specialized niches tend to be better modeled. The Swiss presence-only tree data produce models that are reliable enough to be useful in planning and management applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper examines the direct and indirect impacts of transport infrastructure on industrial employment. We estimate regressions with spatial econometric methods using data from the Spanish regions for the period 1995-2008. We find that the density of motorways and the amount of port traffic (particularly general non-containerized and container traffic) are significant determinants of industrial employment in the region, while the effects of railway density and the amount of airport traffic are unclear. Our empirical analysis shows the existence of significant negative spatial spillovers for the density of motorways and levels of container port traffic while the impact of general non-containerized port traffic seems to be mainly local.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

While general equilibrium theories of trade stress the role of third-country effects, little work has been done in the empirical foreign direct investment (FDI) literature to test such spatial linkages. This paper aims to provide further insights into long-run determinants of Spanish FDI by considering not only bilateral but also spatially weighted third-country determinants. The few studies carried out so far have focused on FDI flows in a limited number of countries. However, Spanish FDI outflows have risen dramatically since 1995 and today account for a substantial part of global FDI. Therefore, we estimate recently developed Spatial Panel Data models by Maximum Likelihood (ML) procedures for Spanish outflows (1993-2004) to top-50 host countries. After controlling for unobservable effects, we find that spatial interdependence matters and provide evidence consistent with New Economic Geography (NEG) theories of agglomeration, mainly due to complex (vertical) FDI motivations. Spatial Error Models estimations also provide illuminating results regarding the transmission mechanism of shocks.