978 resultados para Space representation
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this work, we present a neural network (NN) based method designed for 3D rigid-body registration of FMRI time series, which relies on a limited number of Fourier coefficients of the images to be aligned. These coefficients, which are comprised in a small cubic neighborhood located at the first octant of a 3D Fourier space (including the DC component), are then fed into six NN during the learning stage. Each NN yields the estimates of a registration parameter. The proposed method was assessed for 3D rigid-body transformations, using DC neighborhoods of different sizes. The mean absolute registration errors are of approximately 0.030 mm in translations and 0.030 deg in rotations, for the typical motion amplitudes encountered in FMRI studies. The construction of the training set and the learning stage are fast requiring, respectively, 90 s and 1 to 12 s, depending on the number of input and hidden units of the NN. We believe that NN-based approaches to the problem of FMRI registration can be of great interest in the future. For instance, NN relying on limited K-space data (possibly in navigation echoes) can be a valid solution to the problem of prospective (in frame) FMRI registration.
Resumo:
According to Bergson, the philosophical tradition had been unanimous in declaring the question of time essential. However, it had neglected its correct framing which, for the author, lies in the metaphysical approach of an immediate and inner experience of concrete duration. In the current paper, we shall present Henri Bergson's concept of time, particularly the author's critique to the scope scientific discourse has of this concept. Simultaneously, we shall explore the central role of time in the Bergsonian thought, metaphorically understood as the very stuff of reality. We shall not, therefore, explore Bergson's ideas on Physics, but some of the metaphysical consequences that he withdraws from certain physics' concepts or theories.
Resumo:
A presente dissertação apresenta uma solução para o problema de modelização tridimensional de galerias subterrâneas. O trabalho desenvolvido emprega técnicas provenientes da área da robótica móvel para obtenção um sistema autónomo móvel de modelização, capaz de operar em ambientes não estruturados sem acesso a sistemas de posicionamento global, designadamente GPS. Um sistema de modelização móvel e autónomo pode ser bastante vantajoso, pois constitui um método rápido e simples de monitorização das estruturas e criação de representações virtuais das galerias com um elevado nível de detalhe. O sistema de modelização desloca-se no interior dos túneis para recolher informações sensoriais sobre a geometria da estrutura. A tarefa de organização destes dados com vista _a construção de um modelo coerente, exige um conhecimento exacto do percurso praticado pelo sistema, logo o problema de localização da plataforma sensorial tem que ser resolvido. A formulação de um sistema de localização autónoma tem que superar obstáculos que se manifestam vincadamente nos ambientes underground, tais como a monotonia estrutural e a já referida ausência de sistemas de posicionamento global. Neste contexto, foi abordado o conceito de SLAM (Simultaneous Loacalization and Mapping) para determinação da localização da plataforma sensorial em seis graus de liberdade. Seguindo a abordagem tradicional, o núcleo do algoritmo de SLAM consiste no filtro de Kalman estendido (EKF { Extended Kalman Filter ). O sistema proposto incorpora métodos avançados do estado da arte, designadamente a parametrização em profundidade inversa (Inverse Depth Parametrization) e o método de rejeição de outliers 1-Point RANSAC. A contribuição mais importante do método por nós proposto para o avanço do estado da arte foi a fusão da informação visual com a informação inercial. O algoritmo de localização foi testado com base em dados reais, adquiridos no interior de um túnel rodoviário. Os resultados obtidos permitem concluir que, ao fundir medidas inerciais com informações visuais, conseguimos evitar o fenómeno de degeneração do factor de escala, comum nas aplicações de localização através de sistemas puramente monoculares. Provámos simultaneamente que a correcção de um sistema de localização inercial através da consideração de informações visuais é eficaz, pois permite suprimir os desvios de trajectória que caracterizam os sistemas de dead reckoning. O algoritmo de modelização, com base na localização estimada, organiza no espaço tridimensional os dados geométricos adquiridos, resultando deste processo um modelo em nuvem de pontos, que posteriormente _e convertido numa malha triangular, atingindo-se assim uma representação mais realista do cenário original.
Resumo:
To become an open to outer space, the "museum" acquired new forms and new expressions. The complexity of museological activity thus leads to new representations that alter the initial image of the museum as a building with objects. Their 'boundaries' are now less sharp, not only in relation to the spatial relationship, but also to its temporal dimension, creating an additional challenge which is the recognition of the museum itself. The design, while transdisciplinary activity, thereby assumes a key role in the communication of the museums in its visual representation and recognition of their action. The present study results from a survey conducted in 2010 to 364 Portuguese museums (from a universe of 849 museums), presenting an analysis to its base elements of visual expression of identity (name, logo, symbol, and color).
Resumo:
The paper formulates a genetic algorithm that evolves two types of objects in a plane. The fitness function promotes a relationship between the objects that is optimal when some kind of interface between them occurs. Furthermore, the algorithm adopts an hexagonal tessellation of the two-dimensional space for promoting an efficient method of the neighbour modelling. The genetic algorithm produces special patterns with resemblances to those revealed in percolation phenomena or in the symbiosis found in lichens. Besides the analysis of the spacial layout, a modelling of the time evolution is performed by adopting a distance measure and the modelling in the Fourier domain in the perspective of fractional calculus. The results reveal a consistent, and easy to interpret, set of model parameters for distinct operating conditions.
Resumo:
This paper addresses sensor network applications which need to obtain an accurate image of physical phenomena and do so with a high sampling rate in both time and space. We present a fast and scalable approach for obtaining an approximate representation of all sensor readings at high sampling rate for quickly reacting to critical events in a physical environment. This approach is an improvement on previous work in that after the new approach has undergone a startup phase then the new approach can use a very small sampling period.
Resumo:
Consider a single processor and a software system. The software system comprises components and interfaces where each component has an associated interface and each component comprises a set of constrained-deadline sporadic tasks. A scheduling algorithm (called global scheduler) determines at each instant which component is active. The active component uses another scheduling algorithm (called local scheduler) to determine which task is selected for execution on the processor. The interface of a component makes certain information about a component visible to other components; the interfaces of all components are used for schedulability analysis. We address the problem of generating an interface for a component based on the tasks inside the component. We desire to (i) incur only a small loss in schedulability analysis due to the interface and (ii) ensure that the amount of space (counted in bits) of the interface is small; this is because such an interface hides as much details of the component as possible. We present an algorithm for generating such an interface.
Resumo:
The availability of small inexpensive sensor elements enables the employment of large wired or wireless sensor networks for feeding control systems. Unfortunately, the need to transmit a large number of sensor measurements over a network negatively affects the timing parameters of the control loop. This paper presents a solution to this problem by representing sensor measurements with an approximate representation-an interpolation of sensor measurements as a function of space coordinates. A priority-based medium access control (MAC) protocol is used to select the sensor messages with high information content. Thus, the information from a large number of sensor measurements is conveyed within a few messages. This approach greatly reduces the time for obtaining a snapshot of the environment state and therefore supports the real-time requirements of feedback control loops.
Resumo:
We present a distributed algorithm for cyber-physical systems to obtain a snapshot of sensor data. The snapshot is an approximate representation of sensor data; it is an interpolation as a function of space coordinates. The new algorithm exploits a prioritized medium access control (MAC) protocol to efficiently transmit information of the sensor data. It scales to a very large number of sensors and it is able to operate in the presence of sensor faults.
Resumo:
With the current complexity of communication protocols, implementing its layers totally in the kernel of the operating system is too cumbersome, and it does not allow use of the capabilities only available in user space processes. However, building protocols as user space processes must not impair the responsiveness of the communication. Therefore, in this paper we present a layer of a communication protocol, which, due to its complexity, was implemented in a user space process. Lower layers of the protocol are, for responsiveness issues, implemented in the kernel. This protocol was developed to support large-scale power-line communication (PLC) with timing requirements.
Resumo:
In the last twenty years genetic algorithms (GAs) were applied in a plethora of fields such as: control, system identification, robotics, planning and scheduling, image processing, and pattern and speech recognition (Bäck et al., 1997). In robotics the problems of trajectory planning, collision avoidance and manipulator structure design considering a single criteria has been solved using several techniques (Alander, 2003). Most engineering applications require the optimization of several criteria simultaneously. Often the problems are complex, include discrete and continuous variables and there is no prior knowledge about the search space. These kind of problems are very more complex, since they consider multiple design criteria simultaneously within the optimization procedure. This is known as a multi-criteria (or multiobjective) optimization, that has been addressed successfully through GAs (Deb, 2001). The overall aim of multi-criteria evolutionary algorithms is to achieve a set of non-dominated optimal solutions known as Pareto front. At the end of the optimization procedure, instead of a single optimal (or near optimal) solution, the decision maker can select a solution from the Pareto front. Some of the key issues in multi-criteria GAs are: i) the number of objectives, ii) to obtain a Pareto front as wide as possible and iii) to achieve a Pareto front uniformly spread. Indeed, multi-objective techniques using GAs have been increasing in relevance as a research area. In 1989, Goldberg suggested the use of a GA to solve multi-objective problems and since then other researchers have been developing new methods, such as the multi-objective genetic algorithm (MOGA) (Fonseca & Fleming, 1995), the non-dominated sorted genetic algorithm (NSGA) (Deb, 2001), and the niched Pareto genetic algorithm (NPGA) (Horn et al., 1994), among several other variants (Coello, 1998). In this work the trajectory planning problem considers: i) robots with 2 and 3 degrees of freedom (dof ), ii) the inclusion of obstacles in the workspace and iii) up to five criteria that are used to qualify the evolving trajectory, namely the: joint traveling distance, joint velocity, end effector / Cartesian distance, end effector / Cartesian velocity and energy involved. These criteria are used to minimize the joint and end effector traveled distance, trajectory ripple and energy required by the manipulator to reach at destination point. Bearing this ideas in mind, the paper addresses the planning of robot trajectories, meaning the development of an algorithm to find a continuous motion that takes the manipulator from a given starting configuration up to a desired end position without colliding with any obstacle in the workspace. The chapter is organized as follows. Section 2 describes the trajectory planning and several approaches proposed in the literature. Section 3 formulates the problem, namely the representation adopted to solve the trajectory planning and the objectives considered in the optimization. Section 4 studies the algorithm convergence. Section 5 studies a 2R manipulator (i.e., a robot with two rotational joints/links) when the optimization trajectory considers two and five objectives. Sections 6 and 7 show the results for the 3R redundant manipulator with five goals and for other complementary experiments are described, respectively. Finally, section 8 draws the main conclusions.
Resumo:
Dissertation presented for the PhD Degree in Education Science – Curricular Theory and Science Teaching, by Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
We show that a self-generated set of combinatorial games, S. may not be hereditarily closed but, strong self-generation and hereditary closure are equivalent in the universe of short games. In [13], the question "Is there a set which will give a non-distributive but modular lattice?" appears. A useful necessary condition for the existence of a finite non-distributive modular L(S) is proved. We show the existence of S such that L(S) is modular and not distributive, exhibiting the first known example. More, we prove a Representation Theorem with Games that allows the generation of all finite lattices in game context. Finally, a computational tool for drawing lattices of games is presented. (C) 2014 Elsevier B.V. All rights reserved.