953 resultados para Soybean (Glycine max)
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The soybean (Glycine max) is of great importance to national economic scenario being a major Brazilian agribusiness products. In most regions, the caterpillar-of-soy (Anticarsia gemmatalis) and caterpillar-false-Medideira (Pseudoplusia includes), act as defoliators, with the highest incidence, usually during the growing season, until the end of flowering, and thus causing a significant reduction in the production, which requires control measures. Due to market demands and the large external environmental awareness exists today, the methods of ecological management have been highlighted in modern agriculture. The use of chemical insecticides, besides being harmful to the environment and man, is, in most cases, the high cost to the farmer. The biological pest control using natural enemies can be used as an alternative control method. Thus this literature review is intended to provide the updated information about these pests and biological control as an alternative form of control, as well as one more tool in the integrated pest of soybean.
Resumo:
The application of industrial and municipal waste in the soil may be recommended by your corrective and fertilizer value, giving the great potential for agricultural reuse, improves physical, chemical and biological soil properties and helps to reduce the consumption of fertilizers and correctives, without contamination by heavy metals. This study aimed to evaluate the absorption of nutrients and potentially toxic elements, and their effect on the development of soybean (Glycine max (L.) Merrill) grown under No-Tillage system (NT). The work was developed in the field, at the Experimental Farm Lageado - FCA / UNESP, Botucatu (SP) in an Oxisol under tropical climate of altitude. The experimental design was randomized blocks, factorial 4x4+1, with four replications. The treatments consisted of four residues: two sewage sludge, one centrifuged and treated with quicklime (LC) and a biodigester (LB) and two industrial wastes: steel slag (E) and lime mud (Lcal) , applied in dosages of 0, 2, 4 and 8 Mg ha-1. The surface application of LC, LB, Lcal and E residues in soil under NT favored the development of soybean, with no heavy metal contamination, given the current legislation.
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
The aim of the present study is understanding the properties of a new group of redox proteins having in common a DOMON-type domain with characteristics of cytochromes b. The superfamily of proteins containing a DOMON of this type includes a few protein families. With the aim of better characterizing this new protein family, the present work addresses both a CyDOM protein (a cytochrome b561) and a protein only comprised of DOMON(AIR12), both of plant origin. Apoplastic ascorbate can be regenerated from monodehydroascorbate by a trans-plasma membrane redox system which uses cytosolic ascorbate as a reductant and comprises a high potential cytochrome b. We identified the major plasma membrane (PM) ascorbate-reducible b-type cytochrome of bean (Phaseolus vulgaris) and soybean (Glycine max) hypocotyls as orthologs of Arabidopsis auxin-responsive gene air12. The protein, which is glycosylated and glycosylphosphatidylinositol-anchored to the external side of the PM in vivo, was expressed in Pichia pastoris in a recombinant form, lacking the glycosylphosphatidylinositol-modification signal, and purified from the culture medium. Recombinant AIR12 is a soluble protein predicted to fold into a β-sandwich domain and belonging to the DOMON superfamily. It is shown to be a b-type cytochrome with a symmetrical α-band at 561 nm, to be fully reduced by ascorbate and fully oxidized by monodehydroascorbate. Redox potentiometry suggests that AIR12 binds two high-potential hemes (Em,7 +135 and +236 mV). Phylogenetic analyses reveal that the auxin-responsive genes AIR12 constitute a new family of plasma membrane b-type cytochromes specific to flowering plants. Although AIR12 is one of the few redox proteins of the PM characterized to date, the role of AIR12 in trans-PM electron transfer would imply interaction with other partners which are still to be identified. Another part of the present project was aimed at understanding of a soybean protein comprised of a DOMON fused with a well-defined b561 cytochrome domain (CyDOM). Various bioinformatic approaches show this protein to be composed of an N-terminal DOMON followed by b561 domain. The latter contains five transmembrane helices featuring highly conserved histidines, which might bind haem groups. The CyDOM has been cloned and expressed in the yeast Pichia pastoris, and spectroscopic analyses have been accomplished on solubilized yeast membranes. CyDOM clearly reveal the properties of b-type cytochrome. The results highlight the fact that CyDOM is clearly able to lead an electron flux through the plasmamembrane. Voltage clamp experiments demonstrate that Xenopus laevis oocytes transformed with CyDOM of soybean exhibit negative electrical currents in presence of an external electron acceptor. Analogous investigations were carried out with SDR2, a CyDOM of Drosophila melanogaster which shows an electron transport capacity even higher than plant CyDOM. As quoted above, these data reinforce those obtained in plant CyDOM on the one hand, and on the other hand allow to attribute to SDR2-like proteins the properties assigned to CyDOM. Was expressed in Regenerated tobacco roots, transiently transformed with infected a with chimeral construct GFP: CyDOM (by A. rhizogenes infection) reveals a plasmamembrane localization of CyDOM both in epidermal cells of the elongation zone of roots and in root hairs. In conclusion. Although the data presented here await to be expanded and in part clarified, it is safe to say they open a new perspective about the role of this group of proteins. The biological relevance of the functional and physiological implications of DOMON redox domains seems noteworthy, and it can but increase with future advances in research. Beyond the very finding, however interesting in itself, of DOMON domains as extracellular cytochromes, the present study testifies to the fact that cytochrome proteins containing DOMON domains of the type of “CyDOM” can transfer electrons through membranes and may represent the most important redox component of the plasmamembrane as yet discovered.
Resumo:
The cyclic β-(1→3),β-(1→6)-d-glucan synthesis locus of Bradyrhizobium japonicum is composed of at least two genes, ndvB and ndvC. Mutation in either gene affects glucan synthesis, as well as the ability of the bacterium to establish a successful symbiotic interaction with the legume host soybean (Glycine max). B. japonicum strain AB-14 (ndvB::Tn5) does not synthesize β-glucans, and strain AB-1 (ndvC::Tn5) synthesizes a cyclic β-glucan lacking β-(1→6)-glycosidic bonds. We determined that the structure of the glucan synthesized by strain AB-1 is cyclodecakis-(1→3)-β-d-glucosyl, a cyclic β-(1→3)-linked decasaccharide in which one of the residues is substituted in the 6 position with β-laminaribiose. Cyclodecakis-(1→3)-β-d-glucosyl did not suppress the fungal β-glucan-induced plant defense response in soybean cotyledons and had much lower affinity for the putative membrane receptor protein than cyclic β-(1→3),β-(1→6)-glucans produced by wild-type B. japonicum. This is consistent with the hypothesis presented previously that the wild-type cyclic β-glucans may function as suppressors of a host defense response.
Resumo:
H2O2 is a widespread molecule in many biological systems. It is created enzymatically in living cells during various oxidation reactions and by leakage of electrons from the electron transport chains. Depending on the concentration H2O2 can induce cell protective responses, programmed cell death, or necrosis. Here we provide evidence that H2O2 may function as a developmental signal in the differentiation of secondary walls in cotton (Gossypium hirsutum) fibers. Three lines of evidence support this conclusion: (a) the period of H2O2 generation coincided with the onset of secondary wall deposition, (b) inhibition of H2O2 production or scavenging the available H2O2 from the system prevented the wall differentiation process, and (c) exogenous addition of H2O2 prematurely promoted secondary wall formation in young fibers. Furthermore, we provide support for the concept that H2O2 generation could be mediated by the expression of the small GTPase Rac, the accumulation of which was shown previously to be strongly induced during the onset of secondary wall differentiation. In support of Rac's role in the activation of NADPH oxidase and the generation of reactive oxygen species, we transformed soybean (Glycine max) and Arabidopsis cells with mutated Rac genes. Transformation with a dominantly activated cotton Rac13 gene resulted in constitutively higher levels of H2O2, whereas transformation with the antisense and especially with dominant-negative Rac constructs decreased the levels of H2O2.
Resumo:
A multisubunit form of acetyl coenzyme A (CoA) carboxylase (ACCase) from soybean (Glycine max) was characterized. The enzyme catalyzes the formation of malonyl CoA from acetyl CoA, a rate-limiting step in fatty acid biosynthesis. The four known components that constitute plastid ACCase are biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and the α- and β-subunits of carboxyltransferase (α- and β-CT). At least three different cDNAs were isolated from germinating soybean seeds that encode BC, two that encode BCCP, and four that encode α-CT. Whereas BC, BCCP, and α-CT are products of nuclear genes, the DNA that encodes soybean β-CT is located in chloroplasts. Translation products from cDNAs for BC, BCCP, and α-CT were imported into isolated pea (Pisum sativum) chloroplasts and became integrated into ACCase. Edman microsequence analysis of the subunits after import permitted the identification of the amino-terminal sequence of the mature protein after removal of the transit sequences. Antibodies specific for each of the chloroplast ACCase subunits were generated against products from the cDNAs expressed in bacteria. The antibodies permitted components of ACCase to be followed during fractionation of the chloroplast stroma. Even in the presence of 0.5 m KCl, a complex that contained BC plus BCCP emerged from Sephacryl 400 with an apparent molecular mass greater than about 800 kD. A second complex, which contained α- and β-CT, was also recovered from the column, and it had an apparent molecular mass of greater than about 600 kD. By mixing the two complexes together at appropriate ratios, ACCase enzymatic activity was restored. Even higher ACCase activities were recovered by mixing complexes from pea and soybean. The results demonstrate that the active form of ACCase can be reassembled and that it could form a high-molecular-mass complex.
Resumo:
Mt4 is a cDNA representing a phosphate-starvation-inducible gene from Medicago truncatula that is down-regulated in roots in response to inorganic phosphate (Pi) fertilization and colonization by arbuscular mycorrhizal fungi. Split-root experiments revealed that the expression of the Mt4 gene in M. truncatula roots is down-regulated systemically by both Pi fertilization and colonization by arbuscular mycorrhizal fungi. A comparison of Pi levels in these tissues suggested that this systemic down-regulation is not caused by Pi accumulation. Using a 30-bp region of the Mt4 gene as a probe, Pi-starvation-inducible Mt4-like genes were detected in Arabidopsis and soybean (Glycine max L.), but not in corn (Zea mays L.). Analysis of the expression of the Mt4-like Arabidopsis gene, At4, in wild-type Arabidopsis and pho1, a mutant unable to load Pi into the xylem, suggests that Pi must first be translocated to the shoot for down-regulation to occur. The data from the pho1 and split-root studies are consistent with the presence of a translocatable shoot factor responsible for mediating the systemic down-regulation of Mt4-like genes in roots.
Resumo:
The sensitivity of N2 fixation to drought stress in soybean (Glycine max Merr.) has been shown to be associated with high ureide accumulation in the shoots, which has led to the hypothesis that N2 fixation during drought is decreased by a feedback mechanism. The ureide feedback hypothesis was tested directly by measuring the effect of 10 mm ureide applied by stem infusion or in the nutrient solution of hydroponically grown plants on acetylene reduction activity (ARA). An almost complete inhibition of ARA was observed within 4 to 7 d after treatment, accompanied by an increase in ureide concentration in the shoot but not in the nodules. The inhibition of ARA resulting from ureide treatments was dependent on the concentration of applied ureide. Urea also inhibited ARA but asparagine resulted in the greatest inhibition of nodule activity. Because ureides did not accumulate in the nodule upon ureide treatment, it was concluded that they were not directly inhibitory to the nodules but that their influence mediated through a derivative compound, with asparagine being a potential candidate. Ureide treatment resulted in a continual decrease in nodule permeability to O2 simultaneous with the inhibition of nitrogenase activity during a 5-d treatment period, although it was not clear whether the latter phenomenon was a consequence or a cause of the decrease in the nodule permeability to O2.
Resumo:
3-Methylcrotonyl-coenzyme A carboxylase (MCCase) is a mitochondrial biotin-containing enzyme whose metabolic function is not well understood in plants. In soybean (Glycine max) seedlings the organ-specific and developmentally induced changes in MCCase expression are regulated by mechanisms that control the accumulation of MCCase mRNA and the activity of the enzyme. During soybean cotyledon development, when seed-storage proteins are degraded, leucine (Leu) accumulation peaks transiently at 8 d after planting. The coincidence between peak MCCase expression and the decline in Leu content provides correlative evidence that MCCase is involved in the mitochondrial catabolism of Leu. Direct evidence for this conclusion was obtained from radiotracer metabolic studies using extracts from isolated mitochondria. These experiments traced the metabolic fate of [U-14C]Leu and NaH14CO3, the latter of which was incorporated into methylglutaconyl-coenzyme A (CoA) via MCCase. These studies directly demonstrate that plant mitochondria can catabolize Leu via the following scheme: Leu → α-ketoisocaproate → isovaleryl-CoA → 3-methylcrotonyl-CoA → 3-methylglutaconyl-CoA → 3-hydroxy-3-methylglutaryl-CoA → acetoacetate + acetyl-CoA. These findings demonstrate for the first time, to our knowledge, that the enzymes responsible for Leu catabolism are present in plant mitochondria. We conclude that a primary metabolic role of MCCase in plants is the catabolism of Leu.
Resumo:
Treatment of soybean (Glycine max L. cv Williams 82) cell-suspension cultures with Pseudomonas syringae pv glycinea (Psg) harboring an avirulence gene (avrA) or with yeast elicitor resulted in an oxidative burst characterized by the accumulation of H2O2. This burst, and the resultant induction of glutathione S-transferase transcripts, occurred more rapidly and was more prolonged if cells were simultaneously treated with serine protease inhibitors such as phenylmethylsulfonyl fluoride (PMSF) or diisopropylfluorophosphate. PMSF and diisopropylfluorophosphate potentiate a large oxidative burst in cells exposed to Psg harboring the avrC avirulence gene, which is not recognized by the soybean cultivar used in this study. The potentiated burst was inhibited by diphenylene iodonium, an inhibitor of NADPH oxidase, and by the protein kinase inhibitor K252a. PMSF treatment of elicited cells or cells exposed to Psg:avrA caused a large increase in the accumulation of the isoflavonoid phytoalexin glyceollin; however, this was not associated with increased levels of transcripts encoding key phytoalexin biosynthetic enzymes. Glyceollin accumulation was inhibited by diphenylene iodonium; however, the oxidative burst in cells treated with Psg:avrC and PMSF was not followed by phytoalexin accumulation. We conclude that active oxygen species from the oxidative burst are necessary but not sufficient for inducing isoflavonoid phytoalexin accumulation in soybean cells.