308 resultados para Solidification.
Resumo:
Previously, specifications for mechanical properties of casting alloys were based on separately cast test bars. This practice provided consistently reproducible results; thus, any change in conditions was reflected in changes in the mechanical properties of the test coupons. These test specimens, however, did not necessarily reflect the actual mechanical properties of the castings they were supposed to represent'. Factors such as section thickness and casting configuration affect the solidification rate and soundness of the casting thereby raising or lowering its mechanical properties in comparison with separately cast test specimens. In the work now reported, casting shapes were developed to investigate the variations of section thickness, chemical analysis and heat treatment on the mechanical properties of a high strength Aluminium alloy under varying chilling conditions. In addition, an insight was sought into the behaviour of chills under more practical conditions. Finally, it was demonstrated that additional information could be derived from the radiographs which form an essential part of the quality control of premium quality castings. As a result of the work, it is now possible to select analysis and chilling conditions to optimize the as cast and the heat treated mechanical properties of Aluminum 7% Silicon 0.3% Magnesium alloy.
Resumo:
Two zinc-based alloys of high aluminium content, Super Cosmal alloy containing 60% Al, 6% Si, 1% Cu, 0.3% Mn and HAZCA alloy containing 60% Al, 8% Si, 2% Cu, 0.06% Mg were produced by sand casting. Foundry characteristics in particular, fluidity, mode of solidification and feeding ability were examined. Metallographic analysis of structures was carried out using optical and scanning electron microscopy and their mechanical properties were determined using standard techniques. Dry wear characteristics were determined using a pin-on-disc test, and boundary-lubricated wear was studied using full bearing tests. Results from casting experiments were evaluated and compared with the behaviour of a standard ZA-27 alloy and those from tribological tests with both ZA-27 alloy and a leaded tin-bronze (SAE660) under the same testing conditions. The presence of silicon was beneficial, reducing the temperature range of solidification, improving feeding efficiency and reducing gravity segregation of phases. Use of chills and melt degassing was found necessary to achieve soundness and enhanced mechanical properties. Dry wear tests were performed against a steel counterface for sliding speeds of 0.25, 0.5, 1.0 and 2 m/s and for a range of loads up to 15 kgf. The high aluminium alloys showed wear rates as low as those of ZA-27 at speeds of 0.25 and 0.5 m/s for the whole range of applied loads. ZA-27 performed better at higher speeds. The build up of a surface film on the wearing surface of the test pins was found to be responsible for the mild type of wear of the zinc based alloys. The constitution of the surface film was determined as a complex mixture of aluminium, zinc and iron oxides and metallic elements derived from both sliding materials. For full bearing tests, bushes were machined from sand cast bars and were tested against a steel shaft in the presence of a light spindle oil as the lubricant. Results showed that all zinc based alloys run-in more rapidly than bronze, and that wear in Super Cosmal and HAZCA alloys after prolonged running were similar to those in ZA-27 bearings and significantly smaller than those of the bronze.
Resumo:
Fluidized bed spray granulators (FBMG) are widely used in the process industry for particle size growth; a desirable feature in many products, such as granulated food and medical tablets. In this paper, the first in a series of four discussing the rate of various microscopic events occurring in FBMG, theoretical analysis coupled with CFD simulations have been used to predict granule–granule and droplet–granule collision time scales. The granule–granule collision time scale was derived from principles of kinetic theory of granular flow (KTGF). For the droplet–granule collisions, two limiting models were derived; one is for the case of fast droplet velocity, where the granule velocity is considerable lower than that of the droplet (ballistic model) and another for the case where the droplet is traveling with a velocity similar to the velocity of the granules. The hydrodynamic parameters used in the solution of the above models were obtained from the CFD predictions for a typical spray fluidized bed system. The granule–granule collision rate within an identified spray zone was found to fall approximately within the range of 10-2–10-3 s, while the droplet–granule collision was found to be much faster, however, slowing rapidly (exponentially) when moving away from the spray nozzle tip. Such information, together with the time scale analysis of droplet solidification and spreading, discussed in part II and III of this study, are useful for probability analysis of the various event occurring during a granulation process, which then lead to be better qualitative and, in part IV, quantitative prediction of the aggregation rate.
Resumo:
This paper presents a predictive aggregation rate model for spray fluidized bed melt granulation. The aggregation rate constant was derived from probability analysis of particle–droplet contact combined with time scale analysis of droplet solidification and granule–granule collision rates. The latter was obtained using the principles of kinetic theory of granular flow (KTGF). The predicted aggregation rate constants were validated by comparison with reported experimental data for a range of binder spray rate, binder droplet size and operating granulator temperature. The developed model is particularly useful for predicting particle size distributions and growth using population balance equations (PBEs).
Resumo:
A review of the literature pertaining to the mechanical properties, solidification and segregation effects in nodular cast iron has been made. A series of investigations concerning the influence of microsegregation on mechanical properties of :pearlitic, ferritic and austenitic nodular cast iron have then been reported. The influence of section size on the tensile and impact properties of cornmercial purity and refined ferritic nodular cast iron has been studied. It has been shown. that an increase in section caused a decrease in impact transition temperature of the commercial purity material without greatly affecting the impact transition temperature of the purer material. This effect has been related to increased amounts of segregation effects such as cell boundary carbides in heavier sections of the commercial purity material. Microsegregation studies on the materials used in this thesis have been carried out using an electron probe microanalyser. This technique has shown that concentrations of chromium and manganese and depletions of nickel and silicon occurred at eutectic cell boundaries in nodular cast iron and were often associated with brittle carbides in these areas. These effects have been shown to be more prevalent in heavier sections. The nature of segregation during the solidification of nodular cast iron has been studied by quenching samples of nodular iron during the solidification process. Micro-analysis of such samples has shown that segregation of manganese and chromium occurs by a gradual build-up of these elements at the solid/liquid interface. The microstructures of the quenched specimens revealed carbide filaments connecting graphite nodules and areas of quenched liquid. These filaments have been used as evidence for a revised hypothesis for the solidification of nodular cast iron by a liquid diffusion mechanism. A similar series of experiments has been carried out on two high nickel austenitic irons containing 0.5 per cent manganese and 4 per cent manganese respectively. In both these materials a decrease in elongation was experienced with increasing section. This effect was more drastic in the 4 per cent manganese material which also contained much greater amounts of cell boundary carbide in heavy sections. Micro-analysis of samples of the 4 per cent manganese material quenched during solidification revealed that manganese concentrated in the liquid and that nickel concentrated in the solid during solidification. No segregation of silicon occurred in this material. Carbide filaments appeared in the microstructures of these specimens. A discussion of all the above effects in terms of current concepts is included.
Resumo:
Experiments were conducted to show the effects of thermal and geometric boundary conditions on the liquid pool of a binary alloy system which is undergoing phase change, solidification. Transparent analogue solutions were selected for study and experimental apparatus were designed and built. Thermal distribution and concentration data were collected and analysed for the melt pool of various selected geometries and boundary conditions of the systems under study. The data indicate-that characteristic flows develop for both Hypereutectic and Hypoeutectic concentration levels and that the development of macrosegregation and microsegregation defects in continuous casting materials can be minimised by the adjustment of the process variables.
Resumo:
This is a metamorphic study of mid-P anatectic aluminous gneisses from the Manicouagan and lac du Milieu areas of the central Grenville Province. The rocks are derived from hydrothermally altered felsic protoliths and were metamorphosed at granulite facies conditions during the Grenvillian orogeny. The samples come from three locations separated by several tens of kilometers and exhibit a wide range of textures and bulk compositions. However, they all have the same peak mineral assemblage: garnet + biotite + quartz + K-feldspar +/- plagioclase +/- sillimanite with retrograde cordierite in some, and show evidence of partial melting and melt loss. In terms of mineralogy and bulk composition, the samples were divided into two groups, sillimanite-rich and sillimanite-poor, with a high and low Alumina index in the AFM space, respectively. Phase equilibria modeling in the Na₂O–CaO–K₂O–FeO–MgO–Al₂O₃–SiO₂–H₂O– TiO₂–O (NCKFMASTHO) system using Thermocalc constrained the P–T field of the peak mineral assemblage at 800–900ºC and 6–11kbar, with melt solidification in the range of 800–865ºC and 6–8kbar. The presence of sillimanite inclusions in garnet, and of only scarce, retrograde cordierite, is consistent with moderate dP/dT gradient ‘hairpin’ P– T paths, which were similar between the three locations. This study also investigated the role of Fe3+ on phase stability in mid-P aluminous systems. Fe³⁺ is problematic because although it is incorporated in the NaCKFMASTHO system, it is rarely measured in modeled minerals and rocks and its value is generally assumed. Biotite may contain significant amounts of Fe³⁺, and these were analysed by Mössbauer spectroscopy in selected samples, where they were found to be low (0-4%). In addition, the effect of increasing the bulk Fe³⁺ in the mid-P portion of phase diagrams was modeled. This increase added new minor phases and changed the phase proportions, as well as shifted phase boundaries to a small degree, but P–T paths remained largely unaffected. Finally, the two methods commonly used in phase equilibria modeling to account for melt loss were compared. In some cases there were major differences in the topologies between the ‘melt reintegration’ and ‘adding water’ methods, but the former method is the most consistent with the rock data, and should be the method of choice.
Resumo:
In this note, the authors investigate whether the gas-liquid critical point can remain stable with respect to solidification for narrow attractive interactions down to the Baxter limit. Using a crude cell theory, the authors estimate the necessary conditions for this to be true. Possible realizations are briefly discussed.
Resumo:
Mineralogical (microprobe) and geochemical (X-ray fluorescence, neutron activation analyses) data are given for 18 samples of volcanic rocks from the Guatemala Trench area (Deep Sea Drilling Project Leg 67). Typical fresh oceanic tholeiites occur in the trench itself (Hole 500) and in its immediate vicinity on the Cocos Plate (Site 495). Several samples (often reworked) of "spilitic" oceanic tholeiites are also described from the Trench: their mineralogy (greenschist facies association - actinolite + plagioclase + chlorite) and geochemistry (alteration, sometimes linked to manganese and zinc mineralization) are shown to result from high-temperature (300°-475°C) hydrothermal sea water-basalt interactions. The samples studied are depleted in light rare-earth elements (LREE), with the exception of the slightly LREE-enriched basalts from Hole 500. The occurrence of such different oceanic tholeiites in the same area is problematic. Volcanic rocks from the Guatemala continental slope (Hole 494A) are described as greenschist facies metabasites (actinolite + epidote + chlorite + plagioclase + calcite + quartz), mineralogically different from the spilites exposed on the Costa Rica coastal range (Nicoya Peninsula). Their primary magmatic affinity is uncertain: clinopyroxene and plagioclase compositions, together with titanium and other hygromagmaphile element contents, support an "active margin" affinity. The LREE-depleted patterns encountered in the present case, however, are not frequently found in orogenic samples but are typical of many oceanic tholeiites.
Resumo:
Engineered cocrystals offer an alternative solid drug form with tailored physicochemical properties. Interestingly, although cocrystals provide many new possibilities, they also present new challenges, particularly in regard to their design and large-scale manufacture. Current literature has primarily focused on the preparation and characterization of novel cocrystals typically containing only the drug and coformer, leaving the subsequent formulation less explored. In this paper we propose, for the first time, the use of hot melt extrusion for the mechanochemical synthesis of pharmaceutical cocrystals in the presence of a meltable binder. In this approach, we examine excipients that are amenable to hot melt extrusion, forming a suspension of cocrystal particulates embedded in a pharmaceutical matrix. Using ibuprofen and isonicotinamide as a model cocrystal reagent pair, formulations extruded with a small molecular matrix carrier (xylitol) were examined to be intimate mixtures wherein the newly formed cocrystal particulates were physically suspended in a matrix. With respect to formulations extruded using polymeric carriers (Soluplus and Eudragit EPO, respectively), however, there was no evidence within PXRD patterns of either crystalline ibuprofen or the cocrystal. Importantly, it was established in this study that an appropriate carrier for a cocrystal reagent pair during HME processing should satisfy certain criteria including limited interaction with parent reagents and cocrystal product, processing temperature sufficiently lower than the onset of cocrystal Tm, low melt viscosity, and rapid solidification upon cooling.
Resumo:
An account is given of the Central Laser Facility's work to produce a cryogenic hydrogen targetry system using a pulse tube cryocooler. Due to the increasing demand for low Z thin laser targets, CLF (in collaboration with TUD) have been developing a system which allows the production of solid hydrogen membranes by engineering a design which can achieve this remotely; enabling the gas injection, condensation and solidification of hydrogen without compromising the vacuum of the target chamber. A dynamic sealing mechanism was integrated which allows targets to be grown and then remotely exposed to open vacuum for laser interaction. Further research was conducted on the survivability of the cryogenic targets which concluded that a warm gas effect causes temperature spiking when exposing the solidified hydrogen to the outer vacuum. This effect was shown to be mitigated by improving the pumping capacity of the environment and reducing the minimum temperature obtainable on the target mount. This was achieved by developing a two-stage radiation shield encased with superinsulating blanketing; reducing the base temperature from 14 0.5 K to 7.2 0.2 K about the coldhead as well as improving temperature control stability following the installation of a high-performance temperature controller and sensor apparatus. The system was delivered experimentally and in July 2014 the first laser shots were taken upon hydrogen targets in the Vulcan TAP facility.
Resumo:
Metal casting is a process governed by the interaction of a range of physical phenomena. Most computational models of this process address only what are conventionally regarded as the primary phenomena – heat conduction and solidification. However, to predict other phenomena, such as porosity formation, requires modelling the interaction of the fluid flow, heat transfer, solidification and the development of stressdeformation in the solidified part of the casting. This paper will describe a modelling framework called PHYSICA[1] which has the capability to stimulate such multiphysical phenomena.
Resumo:
Abstract not available
Resumo:
This paper presents a three dimensional, thermos-mechanical modelling approach to the cooling and solidification phases associated with the shape casting of metals ei. Die, sand and investment casting. Novel vortex-based Finite Volume (FV) methods are described and employed with regard to the small strain, non-linear Computational Solid Mechanics (CSM) capabilities required to model shape casting. The CSM capabilities include the non-linear material phenomena of creep and thermo-elasto-visco-plasticity at high temperatures and thermo-elasto-visco-plasticity at low temperatures and also multi body deformable contact with which can occur between the metal casting of the mould. The vortex-based FV methods, which can be readily applied to unstructured meshes, are included within a comprehensive FV modelling framework, PHYSICA. The additional heat transfer, by conduction and convection, filling, porosity and solidification algorithms existing within PHYSICA for the complete modelling of all shape casting process employ cell-centred FV methods. The termo-mechanical coupling is performed in a staggered incremental fashion, which addresses the possible gap formation between the component and the mould, and is ultimately validated against a variety of shape casting benchmarks.
Resumo:
Abstract not available