963 resultados para Soil-binding plants
Resumo:
The general concept that low-water-soluble phosphorus (P) fertilizers should be more agronomically effective when applied to acidic soils was developed based on sources containing mainly calcium (Ca)-P compounds, but it may not hold true for sources with different chemical composition. To obtain information related to this issue, two important iron (Fe)-potassium (K)-P compounds present in superphosphates [Fe 3 KH 8 (PO 4 ) 6·6H 2 O, H8, and Fe 3 KH 14 (PO 4 ) 8·4H 2 O, H14] were prepared and characterized. These P sources were used to provide 30 and 60 mg P kg -1 as neutral ammonium citrate (NAC)+H 2 O-soluble P. Reagent-grade monocalcium phosphate (MCP) was used as a standard P source with high water solubility with an additional rate of 120 mg P kg -1 included. Also, mixtures of both Fe-K-P compounds and MCP were prepared to provide 0, 25, 50, 75, and 100% of the total P as MCP. All sources were applied to a clayey loamy acid soil (pH 5.3) classified as Rhodic Kanhapludult. The soil was incubated at two rates (0 and 10 g kg -1 ) of lime, which resulted in pH 5.4 and 6.8. Upland rice was cultivated to maturity. The H14 compound confirmed to be a highly effective source of P for the rice plants at both soil pH, as opposed to the H8, which was poorly effective when applied alone. When mixed with water-soluble P (WSP), the H8 was able to provide P to the plants with the maximum yield of upland rice reached with 54.8 and 80.5% of WSP for pH 5.4 and 6.8, respectively. The high agronomic performance of the H14 compound clearly indicates that this low-water-soluble P source cannot be deemed as ineffective at high soil pH. Copyright © Taylor & Francis Group, LLC.
Resumo:
Negative effects of soil compaction have been recognized as one of the problems restricting the root system and consequently impairing yields, especially in the Southern Coastal Plain of the USA. Simulations of the root restricting layers in green house studies are necessary for the development of mechanism which alleviates soil compaction problems in these soils. The selection of three distinct bulk densities based on the standard proctor test is also an important factor to determine which bulk density restricts the root layer. The experiment was conducted to assess the root length density and root diameter of the corn (Zea mays L.) crop as a function of bulk density and water stress, characterized by the soil density (1.2; 1.4, and 1.6 g cm -3), and two levels of the water content, approximately (70 and 90% field capacity). The statistical design adopted was completely randomized design, with four replicates in a factorial pattern of (3 × 2). The PVC tubes were superimposed with an internal diameter of 20 cm with a height of 40 cm (the upper tube 20 cm, compacted and inferior tube 10 cm), the hardpan with different levels of soil compaction were located between 20 and 30 cm of the depth of the pot. Results showed that: the main effects of subsoil mechanical impedance were observed on the top layer indicating that the plants had to penetrate beyond the favorable soil conditions before root growth was affected from 3.16; 2.41 to 1.37 cm cm -3 (P<0.005). There was a significant difference at the hardpan layer for the two levels of water and 90% field capacity reduced the root growth from 0.91 to 0.60 cm cm -3 (P<0.005). The root length density and root diameter were affected by increasing soil bulk density from 1.2 to 1.6 g cm -3 which caused penetration resistance to increase to 1.4 MPa. Soil water content of 70% field capacity furnished better root growth in all the layers studied. The increase in root length density resulted in increased root volume. It can also be concluded that the effect of soil compaction impaired the root diameter mostly at the hardpan layer. Soil temperature had detrimental effect on the root growth mostly with higher bulk densities.
Resumo:
Sewage sludge produced by the SABESP wastewater treatment plant (Companhia de Saneamento Básico do Estado de São Paulo), located in Barueri, SP, Brazil, may contain high contents of nickel (Ni), increasing the risk of application to agricultural soils. An experiment was carried out under field conditions in Jaboticabal, SP, Brazil, with the objective of evaluating the effects on soil properties and on maize plants of increasing rates of a sewage sludge rich in Ni that had been applied for 6 consecutive years. The experiment was located on a Typic Haplorthox soil, using an experimental design of randomized blocks with four treatments (rates of sewage sludge) and five replications. At the end of the experiment the accumulated amounts of sewage sludge applied were 0.0, 30.0, 60.0 and 67.5 t ha-1. Maize (Zea mays L.) was the test plant. Soil samples were collected 60 d after sowing at depths of 0-20 cm for Ni studies and from 0 to 10 cm and from 10 to 20 cm for urease studies. Sewage sludge did not cause toxicity or micronutrient deficiencies to maize plants and increased grain production. Soil Ni appeared to be associated with the most stable fractions of the soil organic matter and was protected against strong extracting solutions such as concentrated and hot HNO3 and HCl. Ni added to the soil by sewage sludge increased the metal concentration in the shoots, but not in the grain. The Mehlich 3 extractor was not efficient to evaluate Ni phytoavailability to maize plants. Soil urease activity was increased by sewage sludge only in the layer where the residue was applied. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
The heavy metals when linked to organic matter have a behavior in the soil that is still little known. This study aimed to evaluate the effect of sewage-sludge-based composts when incorporated in the soil, in relation to heavy metals availability. Five composts were incorporated using sugar-cane bagasse, sewage sludge and cattle manure in the respective proportions: 75-0-25, 75-12.5-12.5, 75-25-0, 50-50-0 and 0-100-0 (composts with 0, 12.5, 25, 50 and 100% sewage sludge). The experiment consisted of 6 treatments (5 composts and a control with mineral fertilization) in randomized blocks with a split-plot design. The control and the treatment of 0% sewage sludge received inorganic nitrogen (N). All the treatments received the same amount of N (8.33 g) K (5.80 g) and K (8.11 g) per pot. Tomato plants were cultivated in 24.0 L pots in a greenhouse in Jaboticabal, SP, Brazil. The concentrations of heavy metals were determined in the soil samples at day 0 after compost incorporation. The higher the sewage sludge doses, the higher heavy metal contents in the soil. Among extractants, Melhlich-1 extracted the highest amount of heavy metals, while DTPA extracted the lowest one. The residual fraction presented the highest heavy metal content, followed by Fe oxides crystalline and amorphous to Cu, Cr and Mn, and Mn oxides, and Fe amorphous to Zn, indicating strong associations to oxides and clays. There were significant positive correlations between Mn contents in the plant and Mn linked to Fe oxide amorphous and crystalline.
Resumo:
The use of inks containing organic solvents by the offset printing process implies in the release of volatile organic compounds to the work environment. Many of these compounds such as benzene, toluene, ethylbenzene, and the xylene isomers (well known by the acronym BTEX) are extremely toxic. In this study, the BTEX concentrations were determined in two different printing plants that use distinct types of inks: the conventional and the so-called ecological, which is manufactured based on vegetal oil. Concentration ranges were 43-84, 15-3,480, 2-133, 5-459, and 2-236 μg m-3 for benzene, toluene, ethylbenzene, m + p-xylene, and o-xylene, respectively, for the conventional printing plant. At the ecological printing plant, concentration ranges were below limit of detection (
Resumo:
In the present study, the composition of essential oil of leaves and inflorescences of jambu (Spilanthes oleracea. Jambuarana), under organic manuring and mineral fertilization, was stuhed. Jambu plants show important chemical properties and their production has been addressed for the extraction of the essential oils for cosmetics industries, due to their pharmacolopcal properties. The experimental area of treatments contained urea as mineral fertilizer (120 g m2), applied twice and organic fertilizer (8 kg m2), applied at the planting. Jambu leaves and flowers were harvested twice: the first at 90 days after seedling transplantation and at the opening of the flower buds. Branches were cut at 7 cm from the soil, thus new branches can bud for the accomplishment of the second crop which happened 40 days after the re-budhng. The essential oil was analyzed by gas chromatography coupled with mass-spectrometry. According to our results the most representative compounds were trans-caryophyllene, germacrene-D, 1-dodecene, spathulenol and spilanthol (a compound presenting anesthetic properties) occurring in inflorescences. Fertilization procedure does not affect the content and the quality of the essential oil in Jambu plants. © 2012 Academic Journals Inc.
Resumo:
The objective of this research was to study the effects of P fertilizers applied at time of planting on lychees' nutritional status and on plant growth. The treatments consisted of five doses of P: zero, 50, 100, 200, and 300 g of P2O5 per plant, furnished by triple superphosphate. Plant diameter was evaluated during two years and the plants' nutritional status on the second year. The second year foliar levels of macro and micronutrients (with the exception of Zn) were increased by the P fertilizer. The orchard's initial development, especially during the second year, was also influenced by the fertilizer. The P doses of 164 and 158 g of P2O5 per plant resulted in the largest plant diameter after the first and the second year, respectively. These doses were found to be associated with a foliar P level of <1.4 g kg-1. © 2012 Renato de Mello Prado et al.
Resumo:
A large volume of generated sewage sludge makes its disposal a problem. The usage of sludge in agriculture is highlighted by a number of advantages. However, heavy metals and other toxic compounds may exercise harmful effects to soil organisms. This study evaluated the possible toxic effects of a biosolid sample, under laboratory conditions, for 30 days, using diplopods Rhinocricus padbergi and plants Allium cepa (onion) as test organisms. The data obtained demonstrated that the biosolid raw sample had genotoxic potential for Allium cepa root tip cells. In the diplopods exposed to biosolid sample, epithelium disorganization in the midgut and a reduction of the volume of the hepatic cells were observed after 7 days of exposure. After 30 days, the animals still showed a reduction of the volume of the hepatic cells, but in minor intensity. Allium cepa analysis showed genotoxicity, but this effect was reduced after 30 days of bioprocessing by diplopods. This study was important to know the effects as well as to determine how this waste could be applied concerning the soil living organisms and plants. © 2012 Cintya Ap. Christofoletti et al.
Resumo:
Soil management and crop rotations can affect P and K budget in soil, decreasing losses, and increasing fertilizer use efficiency. The P and K budget in the soil-plant system at depths up to 60. cm was studied for different soil managements and crop rotations under no-till for three years in Botucatu, São Paulo, Brazil. The investigated crop rotations were: triticale (X Triticosecale) and sunflower (Helianthus annuus) cropped in autumn-winter; pearl millet (Pennisetum glaucum), forage sorghum (Sorghum bicolor), and Sunn hemp (Crotalaria juncea) were grown in the spring, as well as an additional treatment with chiseling followed by a fallow period; and soybean (Glycini max, L., Merril) was cropped in the summer. Each year triticale and sunflower were grown in plots and pearl millet, forage sorghum, Sunn hemp and of chisel/fallow in sub-plots. The triticale/millet rotation led to the largest decrease in available P within the 0-0.60. m layer of the soil profile and the largest K increase within the 0-0.05. m layer. Potassium mobility in the soil profile and the increases in the available K content in the 0.40-0.60. m layer were independent of the management system. Crop rotations with or without chiseling are not effective in preventing soil P losses. There is considerable K leaching below 0.60. m, but chiseling and the use of high K accumulating plants as triticale results in lower K losses. © 2012 Elsevier B.V.
Resumo:
After harvest, sugarcane residues left on the soil surface can alter nitrogen (N) dynamics in the plant-soil system. In Oxisols, the nitrogen fertilizer applied had its effects on the levels of ammonium and nitrate in the soil, N concentration in the plant leaves, and on the growth and productivity of second ratoon plants. The N rates tested were of 0, 60, 120, 180, and 240 kg ha-1. Each treatment was replicated four times. Four months after the experiment was started, ammonium and nitrate concentration in the soil, N levels in plant leaves, and plant growth were evaluated. Productivity was evaluated 11 months after the experiment was set. By increasing the content of mineral N in soil, plant growth variables reflected differences in the production of stems; however, it did not affect foliar N. The use of leaf analysis was not important to assess the nutritional status of nitrogen in the ratoon sugarcane. Nitrogen concentration in soil was affected by nitrogen fertilization, but not the N content in leaves. The rate of 138 kg N ha-1enabled greater production of sugarcane stalks (140 t ha-1). © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
The isotopic technique was employed to study boron (B) mobility in tomato and beetroot plants under protected cultivation conditions. An experiment was conducted in which both species grew in 10-dm3 vases filled with coconut fiber, under hydroponic conditions. The plants were subjected to four different treatments: (1) no B in the substratum and no foliar fertilization; (2) no B in the substratum, with foliar 10B fertilization; (3) B in the substratum, with foliar 10B fertilization; and (4) 10B in the substratum and no foliar fertilization. The biological growth variables and total B and 10B contents in the plant parts grown after the application of the nutrient were evaluated. For increasing B content in young tissues, the foliar application of this element was not as efficient as application via root system, indicating low mobility of B in the tissues of both beetroot and tomato plants. © 2013 Copyright Taylor & Francis Group, LLC.
Resumo:
Physical fractions (free light fraction, intra-aggregate light fraction and heavy fraction) of soil organic matter (SOM) are good indicators of soil quality for sustainable land use. The objective of this study was to evaluate the effect of cover crops on total organic carbon (TOC) and physical fractions of soil organic matter in soil under a no-tillage system (NTS) and a conventional tillage system (CTS, one plowing and two disking). A three-year field experiment was carried out as a cover crop-rice (Oryza sativa)-cover crop-rice rotation. Treatments included cover crops (Panicum maximum, Brachiaria ruziziensis, Brachiaria brizantha, and pearl millet (Pennisetum glaucum), fallow, till or no till. The SOM was physically fractionated in free light fraction (FLF), intra-aggregates light fraction (IALF) and heavy fraction (HF). The levels of C in whole soil were also evaluated, as well as C in the light fractions (FLF+IALF) and in the HF. Results indicated that concentrations of C in the FLF and IALF in surface soils (0-0.05m) were much higher (10.8 and 1.95gkg-1, respectively) than that in the 0.05-0.1m soil depth (7.68 and 1.54gkg-1, respectively) and in the 0.1-0.2m soil depth (4.98 and 1.24gkg-1, respectively). The NTS resulted in higher levels of FLF (12.2gkg-1) and IALF (2.19gkg-1) than with CTS (1.37-7.30gkg-1). Millet had the highest C (19.5gkg-1) and N (1.1gkg-1) concentrations in soil. There was an accumulation of TOC and total N in the surface soil with cover crops, and concentrations of TOC were higher in the HF (79.0%) than in the light fractions (21.0%). Although SOM changed little during the two years of this experiment, the various C fractions were significantly affected by the tillage treatments. We conclude that SOM physical fractionation allowed seeing significant differences caused by the soil management in the organic matter dynamics in a short period of time. © 2013 Elsevier B.V.
Resumo:
Metagenomics has been widely employed for discovery of new enzymes and pathways to conversion of lignocellulosic biomass to fuels and chemicals. In this context, the present study reports the isolation, recombinant expression, biochemical and structural characterization of a novel endoxylanase family GH10 (SCXyl) identified from sugarcane soil metagenome. The recombinant SCXyl was highly active against xylan from beechwood and showed optimal enzyme activity at pH 6,0 and 45°C. The crystal structure was solved at 2.75 Å resolution, revealing the classical (β/α)8-barrel fold with a conserved active-site pocket and an inherent flexibility of the Trp281-Arg291 loop that can adopt distinct conformational states depending on substrate binding. The capillary electrophoresis analysis of degradation products evidenced that the enzyme displays unusual capacity to degrade small xylooligosaccharides, such as xylotriose, which is consistent to the hydrophobic contacts at the +1 subsite and low-binding energies of subsites that are distant from the site of hydrolysis. The main reaction products from xylan polymers and phosphoric acid-pretreated sugarcane bagasse (PASB) were xylooligosaccharides, but, after a longer incubation time, xylobiose and xylose were also formed. Moreover, the use of SCXyl as pre-treatment step of PASB, prior to the addition of commercial cellulolytic cocktail, significantly enhanced the saccharification process. All these characteristics demonstrate the advantageous application of this enzyme in several biotechnological processes in food and feed industry and also in the enzymatic pretreatment of biomass for feedstock and ethanol production. © 2013 Alvarez et al.
Resumo:
The increased production of urban sewage sludge requires alternative methods for final disposal. A very promising choice is the use of sewage sludge as a fertilizer in agriculture, since it is rich in organic matter, macro and micronutrients. However, urban sewage sludge may contain toxic substances that may cause deleterious effects on the biota, water and soil, and consequently on humans. There is a lack of studies evaluating how safe the consumption of food cultivated in soils containing urban sewage sludge is. Thus, the aim of this paper was to evaluate biochemical and redox parameters in rats fed with corn produced in a soil treated with urban sewage sludge for a long term. For these experiments, maize plants were grown in soil amended with sewage sludge (rates of 5, 10 and 20. t/ha) or not (control). Four different diets were prepared with the corn grains produced in the field experiment, and rats were fed with these diets for 1, 2, 4, 8 and 12 weeks. Biochemical parameters (glucose, total cholesterol and fractions, triglycerides, aspartate aminotransferase and alanine aminotransferase) as well the redox state biomarkers such as reduced glutathione (GSH), malondialdehyde (MDA), catalase, glutathione peroxidase and butyrylcholinesterase (BuChE) were assessed. Our results show no differences in the biomarkers over 1 or 2 weeks. However, at 4 weeks BuChE activity was inhibited in rats fed with corn grown in soil amended with sewage sludge (5, 10 and 20. t/ha), while MDA levels increased. Furthermore, prolonged exposure to corn cultivated in the highest amount per hectare of sewage sludge (8 and 12 weeks) was associated with an increase in MDA levels and a decrease in GSH levels, respectively. Our findings add new evidence of the risks of consuming food grown with urban sewage sludge. However, considering that the amount and type of toxic substances present in urban sewage sludge varies considerably among different sampling areas, further studies are needed to evaluate sludge samples collected from different sources and/or undergoing different types of treatment. © 2013 Elsevier Inc.
Resumo:
The socioeconomic importance of sugar cane in Brazil is unquestionable because it is the raw material for the production of ethanol and sugar. The accurate spatial intervention in the management of the crop, resulting zones of soil management, increases productivity as well as its agricultural yields. The spatial and Person's correlations between sugarcane attributes and physico-chemical attributes of a Typic Tropustalf were studied in the growing season of 2009, in Suzanápolis, State of São Paulo, Brazil (20°28'10'' S lat.; 50°49'20'' W long.), in order to obtain the one that best correlates with agricultural productivity. Thus, the geostatistical grid with 120 sampling points was installed to soil and data collection in a plot of 14.6 ha with second crop sugarcane. Due to their substantial and excellent linear and spatial correlations with the productivity of the sugarcane, the population of plants and the organic matter content of the soil, by evidencing substantial correlations, linear and spatial, with the productivity of sugarcane, were indicators of management zones strongly attached to such productivity.