972 resultados para Software engineering -- TFC
Resumo:
Scheduling parallel and distributed applications efficiently onto grid environments is a difficult task and a great variety of scheduling heuristics has been developed aiming to address this issue. A successful grid resource allocation depends, among other things, on the quality of the available information about software artifacts and grid resources. In this article, we propose a semantic approach to integrate selection of equivalent resources and selection of equivalent software artifacts to improve the scheduling of resources suitable for a given set of application execution requirements. We also describe a prototype implementation of our approach based on the Integrade grid middleware and experimental results that illustrate its benefits. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
SKAN: Skin Scanner - System for Skin Cancer Detection Using Adaptive Techniques - combines computer engineering concepts with areas like dermatology and oncology. Its objective is to discern images of skin cancer, specifically melanoma, from others that show only common spots or other types of skin diseases, using image recognition. This work makes use of the ABCDE visual rule, which is often used by dermatologists for melanoma identification, to define which characteristics are analyzed by the software. It then applies various algorithms and techniques, including an ellipse-fitting algorithm, to extract and measure these characteristics and decide whether the spot is a melanoma or not. The achieved results are presented with special focus on the adaptive decision-making and its effect on the diagnosis. Finally, other applications of the software and its algorithms are presented.
Resumo:
This work presents a method for predicting resource availability in opportunistic grids by means of use pattern analysis (UPA), a technique based on non-supervised learning methods. This prediction method is based on the assumption of the existence of several classes of computational resource use patterns, which can be used to predict the resource availability. Trace-driven simulations validate this basic assumptions, which also provide the parameter settings for the accurate learning of resource use patterns. Experiments made with an implementation of the UPA method show the feasibility of its use in the scheduling of grid tasks with very little overhead. The experiments also demonstrate the method`s superiority over other predictive and non-predictive methods. An adaptative prediction method is suggested to deal with the lack of training data at initialization. Further adaptative behaviour is motivated by experiments which show that, in some special environments, reliable resource use patterns may not always be detected. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
This work discusses a 4D lung reconstruction method from unsynchronized MR sequential images. The lung, differently from the heart, does not have its own muscles, turning impossible to see its real movements. The visualization of the lung in motion is an actual topic of research in medicine. CT (Computerized Tomography) can obtain spatio-temporal images of the heart by synchronizing with electrocardiographic waves. The FOV of the heart is small when compared to the lung`s FOV. The lung`s movement is not periodic and is susceptible to variations in the degree of respiration. Compared to CT, MR (Magnetic Resonance) imaging involves longer acquisition times and it is not possible to obtain instantaneous 3D images of the lung. For each slice, only one temporal sequence of 2D images can be obtained. However, methods using MR are preferable because they do not involve radiation. In this paper, based on unsynchronized MR images of the lung an animated B-Repsolid model of the lung is created. The 3D animation represents the lung`s motion associated to one selected sequence of MR images. The proposed method can be divided in two parts. First, the lung`s silhouettes moving in time are extracted by detecting the presence of a respiratory pattern on 2D spatio-temporal MR images. This approach enables us to determine the lung`s silhouette for every frame, even on frames with obscure edges. The sequence of extracted lung`s silhouettes are unsynchronized sagittal and coronal silhouettes. Using our algorithm it is possible to reconstruct a 3D lung starting from a silhouette of any type (coronal or sagittal) selected from any instant in time. A wire-frame model of the lung is created by composing coronal and sagittal planar silhouettes representing cross-sections. The silhouette composition is severely underconstrained. Many wire-frame models can be created from the observed sequences of silhouettes in time. Finally, a B-Rep solid model is created using a meshing algorithm. Using the B-Rep solid model the volume in time for the right and left lungs were calculated. It was possible to recognize several characteristics of the 3D real right and left lungs in the shaded model. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Bellerophon is a program for detecting chimeric sequences in multiple sequence datasets by an adaption of partial treeing analysis. Bellerophon was specifically developed to detect 16S rRNA gene chimeras in PCR-clone libraries of environmental samples but can be applied to other nucleotide sequence alignments.
Resumo:
This note considers continuous-time Markov chains whose state space consists of an irreducible class, C, and an absorbing state which is accessible from C. The purpose is to provide results on mu-invariant and mu-subinvariant measures where absorption occurs with probability less than one. In particular, the well-known premise that the mu-invariant measure, m, for the transition rates be finite is replaced by the more natural premise that m be finite with respect to the absorption probabilities. The relationship between mu-invariant measures and quasi-stationary distributions is discussed. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
We shall be concerned with the problem of determining quasi-stationary distributions for Markovian models directly from their transition rates Q. We shall present simple conditions for a mu-invariant measure m for Q to be mu-invariant for the transition function, so that if m is finite, it can be normalized to produce a quasi-stationary distribution. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The movement of chemicals through the soil to the groundwater or discharged to surface waters represents a degradation of these resources. In many cases, serious human and stock health implications are associated with this form of pollution. The chemicals of interest include nutrients, pesticides, salts, and industrial wastes. Recent studies have shown that current models and methods do not adequately describe the leaching of nutrients through soil, often underestimating the risk of groundwater contamination by surface-applied chemicals, and overestimating the concentration of resident solutes. This inaccuracy results primarily from ignoring soil structure and nonequilibrium between soil constituents, water, and solutes. A multiple sample percolation system (MSPS), consisting of 25 individual collection wells, was constructed to study the effects of localized soil heterogeneities on the transport of nutrients (NO3-, Cl-, PO43-) in the vadose zone of an agricultural soil predominantly dominated by clay. Very significant variations in drainage patterns across a small spatial scale were observed tone-way ANOVA, p < 0.001) indicating considerable heterogeneity in water flow patterns and nutrient leaching. Using data collected from the multiple sample percolation experiments, this paper compares the performance of two mathematical models for predicting solute transport, the advective-dispersion model with a reaction term (ADR), and a two-region preferential flow model (TRM) suitable for modelling nonequilibrium transport. These results have implications for modelling solute transport and predicting nutrient loading on a larger scale. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
While multimedia data, image data in particular, is an integral part of most websites and web documents, our quest for information so far is still restricted to text based search. To explore the World Wide Web more effectively, especially its rich repository of truly multimedia information, we are facing a number of challenging problems. Firstly, we face the ambiguous and highly subjective nature of defining image semantics and similarity. Secondly, multimedia data could come from highly diversified sources, as a result of automatic image capturing and generation processes. Finally, multimedia information exists in decentralised sources over the Web, making it difficult to use conventional content-based image retrieval (CBIR) techniques for effective and efficient search. In this special issue, we present a collection of five papers on visual and multimedia information management and retrieval topics, addressing some aspects of these challenges. These papers have been selected from the conference proceedings (Kluwer Academic Publishers, ISBN: 1-4020- 7060-8) of the Sixth IFIP 2.6 Working Conference on Visual Database Systems (VDB6), held in Brisbane, Australia, on 29–31 May 2002.
Resumo:
In this work we study the existence and regularity of mild solutions for a damped second order abstract functional differential equation with impulses. The results are obtained using the cosine function theory and fixed point criterions. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we study the existence of mild solutions for a class of first order abstract partial neutral differential equations with state-dependent delay. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We study the existence of mild solutions for a class of impulsive neutral functional differential equation defined on the whole real axis. Some concrete applications to ordinary and partial neutral differential equations with impulses are considered. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Minimal perfect hash functions are used for memory efficient storage and fast retrieval of items from static sets. We present an infinite family of efficient and practical algorithms for generating order preserving minimal perfect hash functions. We show that almost all members of the family construct space and time optimal order preserving minimal perfect hash functions, and we identify the one with minimum constants. Members of the family generate a hash function in two steps. First a special kind of function into an r-graph is computed probabilistically. Then this function is refined deterministically to a minimal perfect hash function. We give strong theoretical evidence that the first step uses linear random time. The second step runs in linear deterministic time. The family not only has theoretical importance, but also offers the fastest known method for generating perfect hash functions.