924 resultados para Software Engineering Environment
Resumo:
High-quality software documentation is a substantial issue for understanding software systems. Shorter time-to-market software cycles increase the importance of automatism for keeping the documentation up to date. In this paper, we describe the automatic support of the software documentation process using semantic technologies. We introduce a software documentation ontology as an underlying knowledge base. The defined ontology is populated automatically by analysing source code, software documentation and code execution. Through selected results we demonstrate that the use of such semantic systems can support software documentation processes efficiently.
Resumo:
Computer software plays an important role in business, government, society and sciences. To solve real-world problems, it is very important to measure the quality and reliability in the software development life cycle (SDLC). Software Engineering (SE) is the computing field concerned with designing, developing, implementing, maintaining and modifying software. The present paper gives an overview of the Data Mining (DM) techniques that can be applied to various types of SE data in order to solve the challenges posed by SE tasks such as programming, bug detection, debugging and maintenance. A specific DM software is discussed, namely one of the analytical tools for analyzing data and summarizing the relationships that have been identified. The paper concludes that the proposed techniques of DM within the domain of SE could be well applied in fields such as Customer Relationship Management (CRM), eCommerce and eGovernment. ACM Computing Classification System (1998): H.2.8.
Resumo:
Software architecture plays an essential role in the high level description of a system design, where the structure and communication are emphasized. Despite its importance in the software engineering process, the lack of formal description and automated verification hinders the development of good software architecture models. In this paper, we present an approach to support the rigorous design and verification of software architecture models using the semantic web technology. We view software architecture models as ontology representations, where their structures and communication constraints are captured by the Web Ontology Language (OWL) and the Semantic Web Rule Language (SWRL). Specific configurations on the design are represented as concrete instances of the ontology, to which their structures and dynamic behaviors must conform. Furthermore, ontology reasoning tools can be applied to perform various automated verification on the design to ensure correctness, such as consistency checking, style recognition, and behavioral inference.
Resumo:
This study aimed to build a virtual learning environment for application of the nursing process based on the NANDA-I, NOC, NIC and ICNP® . Faced with problems related to learning of the nursing process and classifications, there is an urgent need to develop innovative teaching resources that modify the relationship between students and teachers. The methodology was based on the steps inception, development, construction and transition, and the software development process Rational Process Unifield. The team involved in the development of this environment was composed by researchers and students of The Care and Epidemiological Practice in Health and Nursing and Group of the Software Engineering curse of the Federal University Rio Grande do Norte, with the participation of the Lisbon and Porto Schools of Nursing, in Portugal. In the inception stage the inter research communication was in order to define the functions, features and tools for the construction process. In the preparation, step the planning and modeling occurred, which resulted in the creation of a diagram and a architectural drawings that specify the features and functionality of the software. The development, unit testing and integrated in interfaces of the modules and areas (administrator, teacher, student, and construction of the NP). Then the transition step was performed, which showed complete and functioning system, as well as the training and use by researchers with its use in practice. In conclusion, this study allowed for the planning and the construction of an educational technology, and it is expected that its implementation will trigger a substantial change in the learning of the nursing process and classifications, with the student being active agent of the learning process. Later, an assessment will be made of functional performance, which will enable the software development, with a feedback, correction of defects and necessary changes. It is believed that the software increment after the reviews, this tool grow further and help insert this methodology and every language under the educational and health institutions, promoting paradigmatic desired change by nursing.
Resumo:
Soft skills and teamwork practices were identi ed as the main de ciencies of recent graduates in computer courses. This issue led to a realization of a qualitative research aimed at investigating the challenges faced by professors of those courses in conducting, monitoring and assessing collaborative software development projects. Di erent challenges were reported by teachers, including di culties in the assessment of students both in the collective and individual levels. In this context, a quantitative research was conducted with the aim to map soft skill of students to a set of indicators that can be extracted from software repositories using data mining techniques. These indicators are aimed at measuring soft skills, such as teamwork, leadership, problem solving and the pace of communication. Then, a peer assessment approach was applied in a collaborative software development course of the software engineering major at the Federal University of Rio Grande do Norte (UFRN). This research presents a correlation study between the students' soft skills scores and indicators based on mining software repositories. This study contributes: (i) in the presentation of professors' perception of the di culties and opportunities for improving management and monitoring practices in collaborative software development projects; (ii) in investigating relationships between soft skills and activities performed by students using software repositories; (iii) in encouraging the development of soft skills and the use of software repositories among software engineering students; (iv) in contributing to the state of the art of three important areas of software engineering, namely software engineering education, educational data mining and human aspects of software engineering.
Resumo:
Soft skills and teamwork practices were identi ed as the main de ciencies of recent graduates in computer courses. This issue led to a realization of a qualitative research aimed at investigating the challenges faced by professors of those courses in conducting, monitoring and assessing collaborative software development projects. Di erent challenges were reported by teachers, including di culties in the assessment of students both in the collective and individual levels. In this context, a quantitative research was conducted with the aim to map soft skill of students to a set of indicators that can be extracted from software repositories using data mining techniques. These indicators are aimed at measuring soft skills, such as teamwork, leadership, problem solving and the pace of communication. Then, a peer assessment approach was applied in a collaborative software development course of the software engineering major at the Federal University of Rio Grande do Norte (UFRN). This research presents a correlation study between the students' soft skills scores and indicators based on mining software repositories. This study contributes: (i) in the presentation of professors' perception of the di culties and opportunities for improving management and monitoring practices in collaborative software development projects; (ii) in investigating relationships between soft skills and activities performed by students using software repositories; (iii) in encouraging the development of soft skills and the use of software repositories among software engineering students; (iv) in contributing to the state of the art of three important areas of software engineering, namely software engineering education, educational data mining and human aspects of software engineering.
Resumo:
This research has explored the relationship between system test complexity and tacit knowledge. It is proposed as part of this thesis, that the process of system testing (comprising of test planning, test development, test execution, test fault analysis, test measurement, and case management), is directly affected by both complexity associated with the system under test, and also by other sources of complexity, independent of the system under test, but related to the wider process of system testing. While a certain amount of knowledge related to the system under test is inherent, tacit in nature, and therefore difficult to make explicit, it has been found that a significant amount of knowledge relating to these other sources of complexity, can indeed be made explicit. While the importance of explicit knowledge has been reinforced by this research, there has been a lack of evidence to suggest that the availability of tacit knowledge to a test team is of any less importance to the process of system testing, when operating in a traditional software development environment. The sentiment was commonly expressed by participants, that even though a considerable amount of explicit knowledge relating to the system is freely available, that a good deal of knowledge relating to the system under test, which is demanded for effective system testing, is actually tacit in nature (approximately 60% of participants operating in a traditional development environment, and 60% of participants operating in an agile development environment, expressed similar sentiments). To cater for the availability of tacit knowledge relating to the system under test, and indeed, both explicit and tacit knowledge required by system testing in general, an appropriate knowledge management structure needs to be in place. This would appear to be required, irrespective of the employed development methodology.
Resumo:
Requirements Engineering (RE) has received much attention in research and practice due to its importance to software project success. Its inter-disciplinary nature, the dependency to the customer, and its inherent uncertainty still render the discipline diffcult to investigate. This results in a lack of empirical data. These are necessary, however, to demonstrate which practically relevant RE problems exist and to what extent they matter. Motivated by this situation, we initiated the Naming the Pain in Requirements Engineering (NaPiRE) initiative which constitutes a globally distributed, bi-yearly replicated family of surveys on the status quo and problems in practical RE.
In this article, we report on the analysis of data obtained from 228 companies in 10 countries. We apply Grounded Theory to the data obtained from NaPiRE and reveal which contemporary problems practitioners encounter. To this end, we analyse 21 problems derived from the literature with respect to their relevance and criticality in dependency to their context, and we complement this picture with a cause-effect analysis showing the causes and effects surrounding the most critical problems.
Our results give us a better understanding of which problems exist and how they manifest themselves in practical environments. Thus, we provide a rst step to ground contributions to RE on empirical observations which, by now, were dominated by conventional wisdom only.
Resumo:
VALENTIM, R. A. M. ; SOUZA NETO, Plácido Antônio de. O impacto da utilização de design patterns nas métricas e estimativas de projetos de software: a utilização de padrões tem alguma influência nas estimativas?. Revista da FARN, Natal, v. 4, p. 63-74, 2006
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Reverse engineering is usually the stepping stone of a variety of at-tacks aiming at identifying sensitive information (keys, credentials, data, algo-rithms) or vulnerabilities and flaws for broader exploitation. Software applica-tions are usually deployed as identical binary code installed on millions of com-puters, enabling an adversary to develop a generic reverse-engineering strategy that, if working on one code instance, could be applied to crack all the other in-stances. A solution to mitigate this problem is represented by Software Diversity, which aims at creating several structurally different (but functionally equivalent) binary code versions out of the same source code, so that even if a successful attack can be elaborated for one version, it should not work on a diversified ver-sion. In this paper, we address the problem of maximizing software diversity from a search-based optimization point of view. The program to protect is subject to a catalogue of transformations to generate many candidate versions. The problem of selecting the subset of most diversified versions to be deployed is formulated as an optimisation problem, that we tackle with different search heuristics. We show the applicability of this approach on some popular Android apps.
Resumo:
VALENTIM, R. A. M. ; SOUZA NETO, Plácido Antônio de. O impacto da utilização de design patterns nas métricas e estimativas de projetos de software: a utilização de padrões tem alguma influência nas estimativas?. Revista da FARN, Natal, v. 4, p. 63-74, 2006
Resumo:
This proposal shows that ACO systems can be applied to problems of requirements selection in software incremental development, with the idea of obtaining better results of those produced by expert judgment alone. The evaluation of the ACO systems should be done through a compared analysis with greedy and simulated annealing algorithms, performing experiments with some problems instances
Resumo:
Modern software application testing, such as the testing of software driven by graphical user interfaces (GUIs) or leveraging event-driven architectures in general, requires paying careful attention to context. Model-based testing (MBT) approaches first acquire a model of an application, then use the model to construct test cases covering relevant contexts. A major shortcoming of state-of-the-art automated model-based testing is that many test cases proposed by the model are not actually executable. These \textit{infeasible} test cases threaten the integrity of the entire model-based suite, and any coverage of contexts the suite aims to provide. In this research, I develop and evaluate a novel approach for classifying the feasibility of test cases. I identify a set of pertinent features for the classifier, and develop novel methods for extracting these features from the outputs of MBT tools. I use a supervised logistic regression approach to obtain a model of test case feasibility from a randomly selected training suite of test cases. I evaluate this approach with a set of experiments. The outcomes of this investigation are as follows: I confirm that infeasibility is prevalent in MBT, even for test suites designed to cover a relatively small number of unique contexts. I confirm that the frequency of infeasibility varies widely across applications. I develop and train a binary classifier for feasibility with average overall error, false positive, and false negative rates under 5\%. I find that unique event IDs are key features of the feasibility classifier, while model-specific event types are not. I construct three types of features from the event IDs associated with test cases, and evaluate the relative effectiveness of each within the classifier. To support this study, I also develop a number of tools and infrastructure components for scalable execution of automated jobs, which use state-of-the-art container and continuous integration technologies to enable parallel test execution and the persistence of all experimental artifacts.