950 resultados para Simulation methods.
Resumo:
Theultimate goal of any research in the mechanism/kinematic/design area may be called predictive design, ie the optimisation of mechanism proportions in the design stage without requiring extensive life and wear testing. This is an ambitious goal and can be realised through development and refinement of numerical (computational) technology in order to facilitate the design analysis and optimisation of complex mechanisms, mechanical components and systems. As a part of the systematic design methodology this thesis concentrates on kinematic synthesis (kinematic design and analysis) methods in the mechanism synthesis process. The main task of kinematic design is to find all possible solutions in the form of structural parameters to accomplish the desired requirements of motion. Main formulations of kinematic design can be broadly divided to exact synthesis and approximate synthesis formulations. The exact synthesis formulation is based in solving n linear or nonlinear equations in n variables and the solutions for the problem areget by adopting closed form classical or modern algebraic solution methods or using numerical solution methods based on the polynomial continuation or homotopy. The approximate synthesis formulations is based on minimising the approximation error by direct optimisation The main drawbacks of exact synthesis formulationare: (ia) limitations of number of design specifications and (iia) failure in handling design constraints- especially inequality constraints. The main drawbacks of approximate synthesis formulations are: (ib) it is difficult to choose a proper initial linkage and (iib) it is hard to find more than one solution. Recentformulations in solving the approximate synthesis problem adopts polynomial continuation providing several solutions, but it can not handle inequality const-raints. Based on the practical design needs the mixed exact-approximate position synthesis with two exact and an unlimited number of approximate positions has also been developed. The solutions space is presented as a ground pivot map but thepole between the exact positions cannot be selected as a ground pivot. In this thesis the exact synthesis problem of planar mechanism is solved by generating all possible solutions for the optimisation process ¿ including solutions in positive dimensional solution sets - within inequality constraints of structural parameters. Through the literature research it is first shown that the algebraic and numerical solution methods ¿ used in the research area of computational kinematics ¿ are capable of solving non-parametric algebraic systems of n equations inn variables and cannot handle the singularities associated with positive-dimensional solution sets. In this thesis the problem of positive-dimensional solutionsets is solved adopting the main principles from mathematical research area of algebraic geometry in solving parametric ( in the mathematical sense that all parameter values are considered ¿ including the degenerate cases ¿ for which the system is solvable ) algebraic systems of n equations and at least n+1 variables.Adopting the developed solution method in solving the dyadic equations in direct polynomial form in two- to three-precision-points it has been algebraically proved and numerically demonstrated that the map of the ground pivots is ambiguousand that the singularities associated with positive-dimensional solution sets can be solved. The positive-dimensional solution sets associated with the poles might contain physically meaningful solutions in the form of optimal defectfree mechanisms. Traditionally the mechanism optimisation of hydraulically driven boommechanisms is done at early state of the design process. This will result in optimal component design rather than optimal system level design. Modern mechanismoptimisation at system level demands integration of kinematic design methods with mechanical system simulation techniques. In this thesis a new kinematic design method for hydraulically driven boom mechanism is developed and integrated in mechanical system simulation techniques. The developed kinematic design method is based on the combinations of two-precision-point formulation and on optimisation ( with mathematical programming techniques or adopting optimisation methods based on probability and statistics ) of substructures using calculated criteria from the system level response of multidegree-of-freedom mechanisms. Eg. by adopting the mixed exact-approximate position synthesis in direct optimisation (using mathematical programming techniques) with two exact positions and an unlimitednumber of approximate positions the drawbacks of (ia)-(iib) has been cancelled.The design principles of the developed method are based on the design-tree -approach of the mechanical systems and the design method ¿ in principle ¿ is capable of capturing the interrelationship between kinematic and dynamic synthesis simultaneously when the developed kinematic design method is integrated with the mechanical system simulation techniques.
Resumo:
In this paper, we present a computer simulation study of the ion binding process at an ionizable surface using a semi-grand canonical Monte Carlo method that models the surface as a discrete distribution of charged and neutral functional groups in equilibrium with explicit ions modelled in the context of the primitive model. The parameters of the simulation model were tuned and checked by comparison with experimental titrations of carboxylated latex particles in the presence of different ionic strengths of monovalent ions. The titration of these particles was analysed by calculating the degree of dissociation of the latex functional groups vs. pH curves at different background salt concentrations. As the charge of the titrated surface changes during the simulation, a procedure to keep the electroneutrality of the system is required. Here, two approaches are used with the choice depending on the ion selected to maintain electroneutrality: counterion or coion procedures. We compare and discuss the difference between the procedures. The simulations also provided a microscopic description of the electrostatic double layer (EDL) structure as a function of pH and ionic strength. The results allow us to quantify the effect of the size of the background salt ions and of the surface functional groups on the degree of dissociation. The non-homogeneous structure of the EDL was revealed by plotting the counterion density profiles around charged and neutral surface functional groups. © 2011 American Institute of Physics.
Resumo:
Gene turnover rates and the evolution of gene family sizes are important aspects of genome evolution. Here, we use curated sequence data of the major chemosensory gene families from Drosophila-the gustatory receptor, odorant receptor, ionotropic receptor, and odorant-binding protein families-to conduct a comparative analysis among families, exploring different methods to estimate gene birth and death rates, including an ad hoc simulation study. Remarkably, we found that the state-of-the-art methods may produce very different rate estimates, which may lead to disparate conclusions regarding the evolution of chemosensory gene family sizes in Drosophila. Among biological factors, we found that a peculiarity of D. sechellia's gene turnover rates was a major source of bias in global estimates, whereas gene conversion had negligible effects for the families analyzed herein. Turnover rates vary considerably among families, subfamilies, and ortholog groups although all analyzed families were quite dynamic in terms of gene turnover. Computer simulations showed that the methods that use ortholog group information appear to be the most accurate for the Drosophila chemosensory families. Most importantly, these results reveal the potential of rate heterogeneity among lineages to severely bias some turnover rate estimation methods and the need of further evaluating the performance of these methods in a more diverse sampling of gene families and phylogenetic contexts. Using branch-specific codon substitution models, we find further evidence of positive selection in recently duplicated genes, which attests to a nonneutral aspect of the gene birth-and-death process.
Resumo:
Fluid mixing in mechanically agitated tanks is one of the major unit operations in many industries. Bubbly flows have been of interest among researchers in physics, medicine, chemistry and technology over the centuries. The aim of this thesis is to use advanced numerical methods for simulating microbubble in an aerated mixing tank. Main components of the mixing tank are a cylindrical vessel, a rotating Rushton turbine and the air nozzle. The objective of Computational Fluid Dynamics (CFD) is to predict fluid flow, heat transfer, mass transfer and chemical reactions. The CFD simulations of a turbulent bubbly flow are carried out in a cylindrical mixing tank using large eddy simulation (LES) and volume of fluid (VOF) method. The Rushton turbine induced flow is modeled by using a sliding mesh method. Numerical results are used to describe the bubbly flows in highly complex liquid flow. Some of the experimental works related to turbulent bubbly flow in a mixing tank are briefly reported. Numerical simulations are needed to complete and interpret the results of the experimental work. Information given by numerical simulations has a major role in designing and scaling-up mixing tanks. The results of this work have been reported in the following scientific articles: ·Honkanen M., Koohestany A., Hatunen T., Saarenrinne P., Zamankhan P., Large eddy simulations and PIV experiments of a two-phase air-water mixer, in Proceedings of ASME Fluids Engineering Summer Conference (2005). ·Honkanen M., Koohestany A., Hatunen T., Saarenrinne P., Zamankhan P., Dynamical States of Bubbling in an Aerated Stirring Tank, submitted to J. Computational Physics.
Resumo:
Alpine tree-line ecotones are characterized by marked changes at small spatial scales that may result in a variety of physiognomies. A set of alternative individual-based models was tested with data from four contrasting Pinus uncinata ecotones in the central Spanish Pyrenees to reveal the minimal subset of processes required for tree-line formation. A Bayesian approach combined with Markov chain Monte Carlo methods was employed to obtain the posterior distribution of model parameters, allowing the use of model selection procedures. The main features of real tree lines emerged only in models considering nonlinear responses in individual rates of growth or mortality with respect to the altitudinal gradient. Variation in tree-line physiognomy reflected mainly changes in the relative importance of these nonlinear responses, while other processes, such as dispersal limitation and facilitation, played a secondary role. Different nonlinear responses also determined the presence or absence of krummholz, in agreement with recent findings highlighting a different response of diffuse and abrupt or krummholz tree lines to climate change. The method presented here can be widely applied in individual-based simulation models and will turn model selection and evaluation in this type of models into a more transparent, effective, and efficient exercise.
Resumo:
In this study the theoretical part was created to make comparison between different Value at Risk models. Based on that comparison one model was chosen to the empirical part which concentrated to find out whether the model is accurate to measure market risk. The purpose of this study was to test if Volatility-weighted Historical Simulation is accurate in measuring market risk and what improvements does it bring to market risk measurement compared to traditional Historical Simulation. Volatility-weighted method by Hull and White (1998) was chosen In order to improve the traditional methods capability to measure market risk. In this study we found out that result based on Historical Simulation are dependent on chosen time period, confidence level and how samples are weighted. The findings of this study are that we cannot say that the chosen method is fully reliable in measuring market risk because back testing results are changing during the time period of this study.
Resumo:
OBJECTIVES: Repair of the right ventricular outflow tract (RVOT) in paediatric cardiac surgery remains challenging due to the high reoperation rate. Intimal hyperplasia and consequent arteriosclerosis is one of the most important limitation factors for graft durability. Since local shear stress and pressure are predictive elements for intimal hyperplasia and wall degeneration, we sought to determine in an oversized 12-mm RVOT model, with computed fluid dynamics simulation, the local haemodynamical factors that may explain intimal hyperplasia. This was done with the aim of identifying the optimal degree of oversizing for a 12-mm native RVOT. METHODS: Twenty domestic pigs, with a weight of 24.6 ± 0.89 kg and a native RVOT diameter of 12 ± 1.7 mm, had valve conduits of 12, 16, 18 and 20 mm implanted. Pressure and flow were measured at 75, 100 and 125% of normal flow at RVOT at the pulmonary artery, pulmonary artery bifurcation and at the left and right pulmonary arteries. Three-dimensional computed fluid dynamics (CFD) simulation in all four geometries in all flow modalities was performed. Local shear stress and pressure conditions were investigated. RESULTS: Corresponding to 75, 100 and 125% of steady-state flow, three inlet velocity profiles were obtained, 0.2, 0.29 and 0.36 m/s, respectively. At inflow velocity profiles, low shear stress areas, ranged from 0 to 2 Pa, combined with high-pressure areas ranging from 11.5 to 12.1 mmHg that were found at distal anastomosis, at bifurcation and at the ostia of the left and right pulmonary arteries in all geometries. CONCLUSIONS: In all three oversized geometries, the local reparation of shear stress and pressure in the 16-mm model showed a similar local profile as in the native 12 mm RVOT. According to these findings, we suggest oversizing the natural 12-mm RVOT by not more than 4 mm. The elements responsible for wall degeneration and intimal hyperplasia remain very similar to the conditions present in native RVOT.
Resumo:
The aim of this study is to define a new statistic, PVL, based on the relative distance between the likelihood associated with the simulation replications and the likelihood of the conceptual model. Our results coming from several simulation experiments of a clinical trial show that the PVL statistic range can be a good measure of stability to establish when a computational model verifies the underlying conceptual model. PVL improves also the analysis of simulation replications because only one statistic is associated with all the simulation replications. As well it presents several verification scenarios, obtained by altering the simulation model, that show the usefulness of PVL. Further simulation experiments suggest that a 0 to 20 % range may define adequate limits for the verification problem, if considered from the viewpoint of an equivalence test.
Resumo:
Miller and Gerlai proposed two methods for determining shoal membership in Danio rerio, one based on momentary mean inter-individual distances and the other on post hoc analysis of the trajectories of nearest-neighbor distances. We propose a method based on momentary nearest-neighbor distances and compare the three methods using simulation. In general, our method yielded results that were more similar to their second method than their first one, and is computationally simpler.
Resumo:
Background Virtual reality (VR) simulation is increasingly used in surgical disciplines. Since VR simulators measure multiple outcomes, standardized reporting is needed. Methods We present an algorithm for combining multiple VR outcomes into dimension summary measures, which are then integrated into a meaningful total score. We reanalyzed the data of two VR studies applying the algorithm. Results The proposed algorithm was successfully applied to both VR studies. Conclusions The algorithm contributes to standardized and transparent reporting in VR-related research.
Resumo:
Objective: To analyze anatomical variations associated with celiac plexus complex by means of computed tomography simulation, assessing the risk for organ injury as the transcrural technique is utilized. Materials and Methods: One hundred eight transaxial computed tomography images of abdomen were analyzed. The aortic-vertebral, celiac trunk (CeT)-vertebral, CeT-aortic and celiac-aortic-vertebral topographical relationships were recorded. Two needle insertion pathways were drawn on each of the images, at right and left, 9 cm and 4.5 cm away from the midline. Transfixed vital organs and gender-related associations were recorded. Results: Aortic-vertebral - 45.37% at left and 54.62% in the middle; CeT-vertebral - T12, 36.11%; T12-L1, 32.4%; L1, 27.77%; T11-T12, 2.77%; CeT-aortic - 53.7% at left and 46.3% in the middle; celiac-aortic-vertebral - L-l, 22.22%; M-m, 23.15%; L-m, 31.48%; M-l, 23.15%. Neither correspondence on the right side nor significant gender-related associations were observed. Conclusion: Considering the wide range of abdominal anatomical variations and the characteristics of needle insertion pathways, celiac plexus block should not be standardized. Imaging should be performed prior to the procedure in order to reduce the risks for injuries or for negative outcomes to patients. Gender-related anatomical variations involved in celiac plexus block should be more deeply investigated, since few studies have addressed the subject.
Resumo:
Seaports play an important part in the wellbeing of a nation. Many nations are highly dependent on foreign trade and most trade is done using sea vessels. This study is part of a larger research project, where a simulation model is required in order to create further analyses on Finnish macro logistical networks. The objective of this study is to create a system dynamic simulation model, which gives an accurate forecast for the development of demand of Finnish seaports up to 2030. The emphasis on this study is to show how it is possible to create a detailed harbor demand System Dynamic model with the help of statistical methods. The used forecasting methods were ARIMA (autoregressive integrated moving average) and regression models. The created simulation model gives a forecast with confidence intervals and allows studying different scenarios. The building process was found to be a useful one and the built model can be expanded to be more detailed. Required capacity for other parts of the Finnish logistical system could easily be included in the model.
Resumo:
The role of transport in the economy is twofold. As a sector of economic activity it contributes to a share of national income. On the other hand, improvements in transport infrastructure create room for accelerated economic growth. As a means to support railways as a safe and environmentally friendly transportation mode, the EU legislation has required the opening of domestic railway freight for competition from beginning of year 2007. The importance of railways as a mode of transport has been great in Finland, as a larger share of freight has been carried on rails than in Europe on average. In this thesis it is claimed that the efficiency of goods transport can be enhanced by service specific investments. Furthermore, it is stressed that simulation can and should be used to evaluate the cost-efficiency of transport systems on operational level, as well as to assess transportation infrastructure investments. In all the studied cases notable efficiency improvements were found. For example in distribution, home delivery of groceries can be almost twice as cost efficient as the current practice of visiting the store. The majority of the cases concentrated on railway freight. In timber transportation, the item with the largest annual transport volume in domestic railway freight in Finland, the transportation cost could be reduced most substantially. Also in international timber procurement, the utilization of railway wagons could be improved by combining complementary flows. The efficiency improvements also have positive environmental effects; a large part of road transit could be moved to rails annually. If impacts of freight transport are included in cost-benefit analysis of railway investments, up to 50 % increase in the net benefits of the evaluated alternatives can be experienced, avoiding a possible inbuilt bias in the assessment framework, and thus increasing the efficiency of national investments in transportation infrastructure. Transportation systems are a typical example of complex real world systems that cannot be analysed realistically by analytical methods, whereas simulation allows inclusion of dynamics and the level of detail required. Regarding simulation as a viable tool for assessing the efficiency of transportation systems finds support also in the international survey conducted for railway freight operators; operators use operations research methods widely for planning purposes, while simulation is applied only by the larger operators.
Resumo:
A set of models in Aspen plus was built to simulate the direct synthesis process of hydrogen peroxide in a micro-reactor system. This process model can be used to carry out material balance calculation under various experimental conditions. Three thermodynamic property methods were compared by calculating gas solubility and Uniquac-RK method was finally selected for process model. Two different operation modes with corresponding operation conditions were proposed as the starting point of future experiments. Simulations for these two modes were carried out to get the information of material streams. Moreover, some hydrodynamic parameters such as gas/liquid superficial velocity, gas holdup were also calculated with improved process model. These parameters proved the proposed experimental conditions reasonable to some extent. The influence of operation conditions including temperature, pressure and circulation ratio was analyzed for the first operation mode, where pure oxygen was fed into dissolving tank and hydrogen-carbon dioxide mixture was fed into microreactor directly. The preferred operation conditions for the system are low temperature (2°C) and high pressure (30 bar) in dissolving tank. High circulation ratio might be good in the sense that more oxygen could be dissolved and fed into reactor for reactions, but meanwhile hydrodynamics of microreactor should be considered. Furthermore, more operation conditions of reactor gas/liquid feeds in both of two operation modes were proposed to provide guidance for future experiment design and corresponding hydrodynamic parameters were also calculated. Finally, safety issue was considered from thermodynamic point of view and there is no explosion danger at given experimental plan since the released reaction heat will not cause solvent vaporization inside the microchannels. The improvement of process model still needs further study based on the future experimental results.
Resumo:
The control of coating layer properties is becoming increasingly important as a result of an emerging demand for novel coated paper-based products and an increasing popularity of new coating application methods. The governing mechanisms of microstructure formation dynamics during consolidation and drying are nevertheless, still poorly understood. Some of the difficulties encountered by experimental methods can be overcome by the utilisation of numerical modelling and simulation-based studies of the consolidation process. The objective of this study was to improve the fundamental understanding of pigment coating consolidation and structure formation mechanisms taking place on the microscopic level. Furthermore, it is aimed to relate the impact of process and suspension properties to the microstructure of the coating layer. A mathematical model based on a modified Stokesian dynamics particle simulation technique was developed and applied in several studies of consolidation-related phenomena. The model includes particle-particle and particle-boundary hydrodynamics, colloidal interactions, Born repulsion, and a steric repulsion model. The Brownian motion and a free surface model were incorporated to enable the specific investigation of consolidation and drying. Filter cake stability was simulated in various particle systems, and subjected to a range of base substrate absorption rates and system temperatures. The stability of the filter cake was primarily affected by the absorption rate and size of particles. Temperature was also shown to have an influence. The consolidation of polydisperse systems, with varying wet coating thicknesses, was studied using imposed pilot trial and model-based drying conditions. The results show that drying methods have a clear influence on the microstructure development, on small particle distributions in the coating layer and also on the mobility of particles during consolidation. It is concluded that colloidal properties can significantly impact coating layer shrinkage as well as the internal solids concentration profile. Visualisations of particle system development in time and comparison of systems at different conditions are useful in illustrating coating layer structure formation mechanisms. The results aid in understanding the underlying mechanisms of pigment coating layer consolidation. Guidance is given regarding the relationship between coating process conditions and internal coating slurry properties and their effects on the microstructure of the coating.