975 resultados para Shear Wall Elements in Cores
Resumo:
With a view to more complete understanding of the role of phyto- and zooplankton in biogeochemical cycles, spatial distributions of Fe, Mn, Co, Ni, Cr, Cu, Cd, Pb, Zn, As, Hg, and Corg in the White Sea seston (21 samples) collected in August 2004 during Cruise 64 of R/V ''Professor Shtokman'' were studied. It was shown that the elements in study are accumulated in plankton with enrichment factors from 10**2 for Hg to 10**5 for Fe, as compared to seawater. Spatial distribution of trace elements is determined by sources of their supply and correlates with distribution of primary production and biomass of zooplankton. Increased values of trace element contents (excluding As) are characteristic of the Dvina Bay, whereas the highest As concentrations were found in the Kandalaksha Bay.
Resumo:
As is less toxic than Hg, Cd, Pb, Se, Zn, and Cu. The As clarke for clays and shales is 10 ppm. Our samples of bottom sediments from Kurshskii Bay were determined to contain from 15 to 26 ppm As and up to 34 ppm As in the vicinity of the Neman River mouth. Elevated As concentrations (50-114 ppm) were detected in four columns of subsurface bottom sediments (at depths of 10-65 cm) from the Vistula Lagoon. Elevated As concentrations (50-180 ppm) were also found in a few surface samples of sand from the Gdansk Deep near oil platform D-6. These sediments are either partly contaminated with anthropogenic As or contain Fe sulfides and glauconite, which can concentrate As and contain its elevated concentrations. The As concentration in columns of bottom sediments from the Gulf of Finland were at the natural background level (throughout the columns) typical of the area (9-34 ppm). We repeatedly detected very high As concentrations (up to 227 ppm As) in politic ooze from Bornholm Deep, in the vicinity of the sunken vessel with chemical weapons. The sources of elevated As concentrations in the Baltic Sea are the following: (1) chemical weapon (CW) material buried in the floor of the Baltic Sea; (2) As-bearing pesticides, agricultural mineral fertilizers, and burned coal and other fuels; (3) kerogen-bearing Ordovician rocks exposed on the bottom; and (4) As-rich Fe sulfides brought to the area together with construction sand and gravel. This mixture was used in paper production and for the construction of hydraulic engineering facilities in the Vistula Lagoon in the early 20th century and later caused the so-called lagoon disease.