863 resultados para Shape.
Resumo:
Experimental data have demonstrated that mushroom-shaped fibrils adhere much better to smooth substrates than punch-shaped fibrils. We present a model that suggests that detachment processes for such fibrils are controlled by defects in the contact area that are confined to its outer edge. Stress analysis of the adhered fibril, carried out for both punch and mushroom shapes with and without friction, suggests that defects near the edge of the adhesion area are much more damaging to the pull-off strength in the case of the punch than for the mushroom. The simulations show that the punch has a higher driving force for extension of small edge defects compared with the mushroom adhesion. The ratio of the pull-off force for the mushroom to that of the punch can be predicted from these simulations to be much greater than 20 in the friction-free case, similar to the experimental value. In the case of sticking friction, a ratio of 14 can be deduced. Our analysis also offers a possible explanation for the evolution of asymmetric mushroom shapes (spatulae) in the adhesion organ of geckos.
Resumo:
Based on shape memory effect of the sputtered thin film shape memory alloys, different types of micromirror structures were designed and fabricated for optical sensing application. Using surface micromachining, TiNi membrane mirror structure has been fabricated, which can be actuated based on intrinsic two-way shape memory effect of the free-standing TiNi film. Using bulk micromachining, TiNi/Si and TiNi/Si 3N 4microcantilever mirror structures were fabricated. © 2007 IOP Publishing Ltd.
Resumo:
For Micro-electro-mechanical System (MEMS) applications, TiNi-based thin film Shape Memory Alloys (SMAs) possess many desirable properties, such as high power density, large transformation stress and strain upon heating and cooling, superelasticity and biocompatibility. In this paper, recent development in TiNi-based thin film SMA and microactuator applications is discussed. The topics related to film deposition and characterisation is mainly focused on crystal nucleation and growth during annealing, film thickness effect, film texture, stress induced surface relief, wrinkling and trenches as well as Temperature Memory Effect (TME). The microactuator applications are mainly focused on microvalve and microcage for biological applications, micromirror for optical applications and data storage using nanoindentation method. Copyright © 2009, Inderscience Publishers.
Resumo:
In this paper, we aim to reconstruct free-from 3D models from a single view by learning the prior knowledge of a specific class of objects. Instead of heuristically proposing specific regularities and defining parametric models as previous research, our shape prior is learned directly from existing 3D models under a framework based on the Gaussian Process Latent Variable Model (GPLVM). The major contributions of the paper include: 1) a probabilistic framework for prior-based reconstruction we propose, which requires no heuristic of the object, and can be easily generalized to handle various categories of 3D objects, and 2) an attempt at automatic reconstruction of more complex 3D shapes, like human bodies, from 2D silhouettes only. Qualitative and quantitative experimental results on both synthetic and real data demonstrate the efficacy of our new approach. ©2009 IEEE.