942 resultados para Sesquiterpene dimer
Resumo:
Physico-chemical properties of 3-chloro-2-nitrobenzoates of Co(II), Ni(II) and Cu(II) were synthesized and studied. The complexes were obtained as mono- and dihydrates with a metal ion to ligand ratio of 1 : 2. All analysed 3-chloro-2-nitrobenzoates are polycrystalline compounds with colours depending on the central ions: pink for Co(II), green for Ni(II) and blue for Cu(II) complexes. Their thermal decomposition was studied in the range of 293 523 K, because it was found that on heating in air above 523 K 3-chloro-2-nitrobenzoates decompose explosively. Hydrated complexes lose crystallization water molecules in one step and anhydrous compounds are formed. The final products of their decomposition are the oxides of the respective transition metals. From the results it appears that during dehydration process no transformation of nitro group to nitrite takes place. The solubilities of analysed complexes in water at 293 K are of the order of 10-4 10-2 mol / dm³. The magnetic moment values of Co2+, Ni2+ and Cu2+ ions in 3-chloro-2-nitrobenzoates experimentally determined at 76 303 K change from 3.67µB to 4.61µB for Co(II) complex, from 2.15µB to 2.87µB for Ni(II) 3-chloro-2-nitrobenzoate and from 0.26µB to 1.39µB for Cu(II) complex. 3-Chloro-2-nitrobenzoates of Co(II) and Ni(II) follow the Curie-Weiss law. Complex of Cu(II) forms dimer.
Resumo:
2,4 - Dimethoxybenzoates of Mn(II), Co(II) and Cu(II) have been synthesized as hydrated or anyhydrous polycrystalline solids and characterized by elemental analysis, IR spectroscopy, magnetic studies and X-ray diffraction measurements. They possess the following colours: Mn(II) - white, Co(II) - pink and Cu(II) - blue. The carboxylate groups bind as monodentate, or a symmetrical bidentate bridging ligands and tridentate. The thermal stabilities were determined in air at 293-1173K. When heated the hydrated complexes dehydrate to from anhydous salts which are decomposed to the oxides of respective metals. The magnetic susceptibilites of the 2,4-dimethoxybenzoates were measured over the range 76-303 K and their magnetic moments were calculated. The results reveal the complexes of Mn(II), Co(II) to be high-spin complexes and that of Cu(II) to form dimer.
Resumo:
The physicochemical properties of 2,4-, and 3,4- dimethoxybenzoates of Cu(II), Co(II) and Nd(III) were studied and compared to observe the -OCH3 substituent positions in benzene ring on the character of complexes. The analysed compounds are crystalline hydrated or anhydrous salts with colours depending on the kind of central ions: blue for Cu(II), pink for Co(II) and violet for Nd(III) complexes. The carboxylate groups bind as monodentate, bidentate bridging or chelating and even tridentate ligands. Their thermal stabilities were studied in air at 293-1173K. When heated the hydrated complexes release the water molecules and form anhydrous compounds which are then decomposed to the oxides of respective metals. Their magnetic moment values were determined in the range of 76-303K. The results reveal the compounds of Nd(III) and Co(II) to be the high-spin and that of Cu(II) forms dimer. The various positions of -OCH3 groups in benzene ring influence some of physicochemical properties of analysed compounds.
Resumo:
Photosynthetic reactions are divided in two parts: light-driven electron transfer reactions and carbon fixation reactions. Electron transfer reactions capture solar energy and split water molecules to form reducing energy (NADPH) and energy-carrying molecules (ATP). These end-products are used for fixation of inorganic carbon dioxide into organic sugar molecules. Ferredoxin-NADP+ oxidoreductase (FNR) is an enzyme that acts at the branch point between the electron transfer reactions and reductive metabolism by catalyzing reduction of NADP+ at the last step of the electron transfer chain. In this thesis, two isoforms of FNR from A rabidopsis thaliana, FNR1 and FNR2, were characterized using the reverse genetics approach. The fnr1 and fnr2 mutant plants resembled each other in many respects. Downregulation of photosynthesis protected the single fnr mutant plants from excess formation of reactive oxygen species (ROS), even without significant upregulation of antioxidative mechanisms. Adverse growth conditions, however, resulted in phenotypic differences between fnr1 and fnr2. While fnr2 plants showed downregulation of photosynthetic complexes and upregulation of antioxidative mechanisms under low-temperature growth conditions, fnr1 plants had the wild-type phenotype, indicating that FNR2 may have a specific role in redistribution of electrons under unfavorable conditions. The heterozygotic double mutant (fnr1xfnr2) was severely devoid of chloroplastic FNR, which clearly restricted photosynthesis. The fnr1xfnr2 plants used several photoprotective mechanisms to avoid oxidative stress. In wild-type chloroplasts, both FNR isoforms were found from the stroma, the thylakoid membrane, and the inner envelope membrane. In the absence of the FNR1 isoform, FNR2 was found only in the stroma, suggesting that FNR1 and FNR2 form a dimer, by which FNR1 anchors FNR2 to the thylakoid membrane. Structural modeling predicted formation of an FNR dimer in complex with ferredoxin. In this thesis work, Tic62 was found to be the main protein that binds FNR to the thylakoid membrane, where Tic62 and FNR formed high molecular weight complexes. The formation of such complexes was shown to be regulated by the redox state of the chloroplast. The accumulation of Tic62-FNR complexes in darkness and dissociation of complexes from the membranes in light provide evidence that the complexes may have roles unrelated to photosynthesis. This and the high viability of fnr1 mutant plants lacking thylakoid-bound FNR indicate that the stromal pool of FNR is photosynthetically active.
Resumo:
Structural studies of proteins aim at elucidating the atomic details of molecular interactions in biological processes of living organisms. These studies are particularly important in understanding structure, function and evolution of proteins and in defining their roles in complex biological settings. Furthermore, structural studies can be used for the development of novel properties in biomolecules of environmental, industrial and medical importance. X-ray crystallography is an invaluable tool to obtain accurate and precise information about the structure of proteins at the atomic level. Glutathione transferases (GSTs) are amongst the most versatile enzymes in nature. They are able to catalyze a wide variety of conjugation reactions between glutathione (GSH) and non-polar components containing an electrophilic carbon, nitrogen or sulphur atom. Plant GSTs from the Tau class (a poorly characterized class) play an important role in the detoxification of xenobiotics and stress tolerance. Structural studies were performed on a Tau class fluorodifen-inducible glutathione transferase from Glycine max (GmGSTU4-4) complexed with GSH (2.7 Å) and a product analogue Nb-GSH (1.7 Å). The three-dimensional structure of the GmGSTU4-4-GSH complex revealed that GSH binds in different conformations in the two subunits of the dimer: in an ionized form in one subunit and a non-ionized form in the second subunit. Only the ionized form of the substrate may lead to the formation of a catalytically competent complex. Structural comparison between the GSH and Nb-GSH bound complexes revealed significant differences with respect to the hydrogen-bonding, electrostatic interaction pattern, the upper part of -helix H4 and the C-terminus of the enzyme. These differences indicate an intrasubunit modulation between the G-and Hsites suggesting an induced-fit mechanism of xenobiotic substrate binding. A novel binding site on the surface of the enzyme was also revealed. Bacterial type-II L-asparaginases are used in the treatment of haematopoietic diseases such as acute lymphoblastic leukaemia (ALL) and lymphomas due to their ability to catalyze the conversion of L-asparagine to L-aspartate and ammonia. Escherichia coli and Erwinia chrysanthemi asparaginases are employed for the treatment of ALL for over 30 years. However, serious side-effects affecting the liver and pancreas have been observed due to the intrinsic glutaminase activity of the administered enzymes. Structural studies on Helicobacter pylori L-asparaginase (HpA) were carried out in an effort to discover novel L-asparaginases with potential chemotherapeutic utility in ALL treatment. Detailed analysis of the active site geometry revealed structurally significant differences between HpA and other Lasparaginases that may be important for the biological activities of the enzyme and could be further exploited in protein engineering efforts.
Resumo:
This work aimed to describe the foliar anatomy of seven species of Eucalyptus, emphasizing the characterization of secretory structures and the chemical nature of the compounds secreted and /or present in the leaves. Anatomical characterization and histochemical evaluation to determine the nature and localization of the secondary compounds were carried out in fully expanded leaves, according to standard methodology. Anatomical differences were verified among the species studied, especially in E. pyrocarpa. Sub-epidermal cavities were the only secretory structures found in the seven species studied, with higher density in E. pellita and lower in E. pilularis. The following compounds were histochemically detected: lipophilic compounds, specifically lipids of the essential or resin-oil type and sesquiterpene lactones found in the lumen of the cavities of the seven species; and hydrophilic compounds, of the phenolic compound type found in the mesophyll of all the species studied and on the epidermis of some of them. The results confirmed the complexity of the product secreted by the cavities, stressing the homogeneous histochemistry nature of these compounds among the species. However, the phenolic compounds results may be an indication of important variations in adaptations and ecological relations, since they show differences among the species.
Resumo:
Hawthorn (Crataegus sp.) is widely distributed in the northern hemisphere (Asia, Europe and North America). It has been used as a medicinal material and food for hundreds of years both in Europe and in China. Clinical investigations and other research suggest that extracts of hawthorn fruits and leaves have multiple health effects including hypolipidaemic, anti-atherosclerotic, hypotensive, cardioprotective and blood vessel relaxing activities. Hawthorn fruit extracts have also displayed antioxidant and radical scavenging activities. Emblic leafflower fruit (Phyllanthus emblica) is widely used in Chinese and Indian traditional medicine. It has been found to have anti-cancer, hypoglycaemic and hypolipidaemic activities as well as cardioprotective effects and antioxidant activity. The fruit is currently used as a functional food targeted at obese people in China. Phenolic compounds, procyanidins (PCs), flavonols and C-glycosyl flavones in hawthorn and hydrolysable tannins in emblic leafflower fruits are considered among the major bioactive compounds in these berries. Moreover, hawthorn and emblic leafflower fruits are rich in vitamin C, triterpenoids, fruit acids, sugar alcohols and some other components with beneficial effects on the health of human beings. The aim of the thesis work was to characterise the major phenolic compounds in hawthorn fruits and leaves and emblic leafflower fruits as well as other components contributing to the nutritional profile and sensory properties of hawthorn fruits. Differences in the content and compositional profile of the major phenolic compounds, sugars, acids and sugar alcohols within various origins and species of hawthorn were also investigated. Acids, sugars and sugar alcohols in the fruits of different origins/cultivars belonging to three species (C. pinnatifida, C. brettschneideri and C. scabrifolia) of hawthorn were analysed by gas chromatography (GC-FID) and mass spectrometry (Publication I). Citric acid, quinic acid, malic acid, fructose, glucose, sorbitol and myo-inositol were found in all the subspecies. Sucrose was present only in C. scabrifolia and three cultivars of C. pinnatifida var. major. Forty-two phenolic compounds were identified/tentatively identified in fruits of C. pinnatifida var. major by polyamide column chromatography combined with high-performance liquid chromatograph-electrospray ionisation mass spectrometry (HPLC-ESI-MS) (Publication II). Ideain, chlorogenic acid, procyanidin (PC) B2, (-)-epicatechin, hyperoside and isoquercitrin were the major phenolic components identified. In addition, 35 phenolic compounds were tentatively identified based on UV and mass spectra. Eleven major phenolic compounds (hyperoside, isoquercitrin, chlorogenic acid, ideain, (-)-epicatechin, two PC dimers, three PC trimers and a PC dimer-hexoside) were quantified in the fruits of 22 cultivars/origins of three species of Chinese hawthorn by HPLC-ESI-MS with single ion recording function (SIR) (Publication III). The fruits of the hawthorn cultivars/origins investigated fell into two groups, one rich in sugars and flavonols, the other rich in acids and procyanidins. Based on the compositional features, different biological activities and sensory properties may be expected between cultivars/origins of the two groups. The results suggest that the contents of phenolic compounds, acids, sugars and sugar alcohols may be used as chemotaxonomic information distinguishing the hawthorn species from each other. Phenolic compounds in fruits and leaves of C. grayana and their changes during fruit ripening/harvesting were investigated using HPLC-UV-ESI-MS (Publication IV). (-)-Epicatechin, PC B2 and C1, hyperoside and a quercetin-pentoside were the major phenolic compounds in both fruits and leaves. Three C-glycosyl flavones (a luteolin-C-hexoside, a methyl luteolin-C-hexoside and an apigenin-C-hexoside) were present in leaves in abundance, but only at trace levels in fruits. Ideain and 5-O-caffeoylquinic acid were found in fruits only. Additionally, eleven phenolic compounds were identified/tentatively identified in both leaves and fruits (three B-type PC trimers, two B-type PC tetramers, a quercetin-rhamnosylhexoside, a quercetin-pentoside, a methoxykaempferol-methylpentosylhexoside, a quercetin-hexoside acetate, a methoxykaempferol-pentoside, chlorogenic acid and an unknown hydroxycinnamic acid derivative). The total content of phenolic compounds reached the highest level by the end of August in fruits and by the end of September in leaves. The compositional profiles of phenolic compounds in fruits and leaves of C. grayana were different from those of C. pinnatifida, C. brettschneideri, C. scabrifolia, C. pinnatifida. var. major, C. monogyna, C. laevigata and C. pentagyna. Phenolic compounds in emblic leafflower fruits were characterised by Sephadex LH-20 column chromatography combined with HPLC-ESI-MS (Publication V). A mucic acid gallate, three isomers of mucic acid lactone gallate, a galloylglucose, gallic acid, a digalloylglucose, putranjivain A, a galloyl-HHDP-glucose, elaeocarpusin and chebulagic acid represented the major phenolic compounds in fruits of emblic leafflower. In conclusion, results of this study significantly increase the current knowledge on the key bioactive and nutritional components of hawthorn and emblic leafflower fruits. These results provide important information for research on the mechanism responsible for the health benefits of these fruits.
Resumo:
The Ca2+-modulated, dimeric proteins of the EF-hand (helix-loop-helix) type, S100A1 and S100B, that have been shown to inhibit microtubule (MT) protein assembly and to promote MT disassembly, interact with the type III intermediate filament (IF) subunits, desmin and glial fibrillary acidic protein (GFAP), with a stoichiometry of 2 mol of IF subunit/mol of S100A1 or S100B dimer and an affinity of 0.5-1.0 µM in the presence of a few micromolar concentrations of Ca2+. Binding of S100A1 and S100B results in inhibition of desmin and GFAP assemblies into IFs and stimulation of the disassembly of preformed desmin and GFAP IFs. S100A1 and S100B interact with a stretch of residues in the N-terminal (head) domain of desmin and GFAP, thereby blocking the head-to-tail process of IF elongation. The C-terminal extension of S100A1 (and, likely, S100B) represents a critical part of the site that recognizes desmin and GFAP. S100B is localized to IFs within cells, suggesting that it might have a role in remodeling IFs upon elevation of cytosolic Ca2+ concentration by avoiding excess IF assembly and/or promoting IF disassembly in vivo. S100A1, that is not localized to IFs, might also play a role in the regulation of IF dynamics by binding to and sequestering unassembled IF subunits. Together, these observations suggest that S100A1 and S100B may be regarded as Ca2+-dependent regulators of the state of assembly of two important elements of the cytoskeleton, IFs and MTs, and, potentially, of MT- and IF-based activities.
Resumo:
SDS, C12E8, CHAPS or CHAPSO or a combination of two of these detergents is generally used for the solubilization of Na,K-ATPase and other ATPases. Our method using only C12E8 has the advantage of considerable reduction of the time for enzyme purification, with rapid solubilization and purification in a single chromatographic step. Na,K-ATPase-rich membrane fragments of rabbit kidney outer medulla were obtained without adding SDS. Optimum conditions for solubilization were obtained at 4ºC after rapid mixing of 1 mg of membrane Na,K-ATPase with 1 mg of C12E8/ml, yielding 98% recovery of the activity. The solubilized enzyme was purified by gel filtration on a Sepharose 6B column at 4ºC. Non-denaturing PAGE revealed a single protein band with phosphomonohydrolase activity. The molecular mass of the purified enzyme estimated by gel filtration chromatography was 320 kDa. The optimum apparent pH obtained for the purified enzyme was 7.5 for both PNPP and ATP. The dependence of ATPase activity on ATP concentration showed high (K0.5 = 4.0 µM) and low (K0.5 = 1.4 mM) affinity sites for ATP, with negative cooperativity. Ouabain (5 mM), oligomycin (1 µg/ml) and sodium vanadate (3 µM) inhibited the ATPase activity of C12E8-solubilized and purified Na,K-ATPase by 99, 81 and 98.5%, respectively. We have shown that Na,K-ATPase solubilized only with C12E8 can be purified and retains its activity. The activity is consistent with the form of (alphaß)2 association.
Resumo:
Cardiac troponins (cTn) I and T are the current golden standard biochemical markers in the diagnosis and risk stratification of patients with suspected acute coronary syndrome. During the past few years, novel assays capable of detecting cTn‐concentrations in >50% of apparently healthy individuals have become readily available. With the emerging of these high sensitivity cTn assays, reductions in the assay specificity have caused elevations in the measured cTn levels that do not correlate with the clinical picture of the patient. The increased assay sensitivity may reveal that various analytical interference mechanisms exist. This doctoral thesis focused on developing nanoparticle‐assisted immunometric assays that could possibly be applied to an automated point‐of‐care system. The main objective was to develop minimally interference‐prone assays for cTnI by employing recombinant antibody fragments. Fast 5‐ and 15‐minute assays for cTnI and D‐dimer, a degradation product of fibrin, based on intrinsically fluorescent nanoparticles were introduced, thus highlighting the versatility of nanoparticles as universally applicable labels. The utilization of antibody fragments in different versions of the developed cTnI‐assay enabled decreases in the used antibody amounts without sacrificing assay sensitivity. In addition, the utilization of recombinant antibody fragments was shown to significantly decrease the measured cTnI concentrations in an apparently healthy population, as well as in samples containing known amounts of potentially interfering factors: triglycerides, bilirubin, rheumatoid factors, or human anti‐mouse antibodies. When determining the specificity of four commercially available antibodies for cTnI, two out of the four cross‐reacted with skeletal troponin I, but caused crossreactivity issues in patient samples only when paired together. In conclusion, the results of this thesis emphasize the importance of careful antibody selection when developing cTnI assays. The results with different recombinant antibody fragments suggest that the utilization of antibody fragments should strongly be encouraged in the immunoassay field, especially with analytes such as cTnI that require highly sensitive assay approaches.
Resumo:
Cardiopulmonary bypass is frequently associated with excessive blood loss. Platelet dysfunction is the main cause of non-surgical bleeding after open-heart surgery. We randomized 65 patients in a double-blind fashion to receive tranexamic acid or placebo in order to determine whether antifibrinolytic therapy reduces chest tube drainage. The tranexamic acid group received an intravenous loading dose of 10 mg/kg, before the skin incision, followed by a continuous infusion of 1 mg kg-1 h-1 for 5 h. The placebo group received a bolus of normal saline solution and continuous infusion of normal saline for 5 h. Postoperative bleeding and fibrinolytic activity were assessed. Hematologic data, convulsive seizures, allogeneic transfusion, occurrence of myocardial infarction, mortality, allergic reactions, postoperative renal insufficiency, and reopening rate were also evaluated. The placebo group had a greater postoperative blood loss (median (25th to 75th percentile) 12 h after surgery (540 (350-750) vs 300 (250-455) mL, P = 0.001). The placebo group also had greater blood loss 24 h after surgery (800 (520-1050) vs 500 (415-725) mL, P = 0.008). There was a significant increase in plasma D-dimer levels after coronary artery bypass grafting only in patients of the placebo group, whereas no significant changes were observed in the group treated with tranexamic acid. The D-dimer levels were 1057 (1025-1100) µg/L in the placebo group and 520 (435-837) µg/L in the tranexamic acid group (P = 0.01). We conclude that tranexamic acid effectively reduces postoperative bleeding and fibrinolysis in patients undergoing first-time coronary artery bypass grafting compared to placebo.
Resumo:
A number of synthetically useful ring systems can be prepared via the intramolecular insertion of a metal-stabilized carbenoid into a heteroaromatic systems. The chemical outcome of these reactions are dependent not only on the nature of the heteroatom but also on the length of the aliphatic tether linking the carbenoid moiety with the aromatic fragment. Our work with furanyl and thienyl systems containing a single methylene tether have allowed for some rather atypical chemistry. For example, treatment of l-diazo-3-(2-thienyl)-2-propanone (6) with catalytic rhodium (II) acetate yields 5,6- dihydro-4^-cyclopenta[Z>]thiophen-5-one (3) while, the isomeric l-diazo-3-(3-thienyl)-2- propanone(15) gives a spiro-disulphide (20). Novel chemistry was also exhibited in the analogous furanyl systems. While treatment of l-diazo-3-(3-furanyl)-2-propanone (52) with Rh2(OAc)4 resulted in the expected 2-(4-Oxo-2-cyclopentenyliden)acetaldehyde (54), isomeric l-diazo-3-(2- furanyl)-2-propanone (8) undergoes vinylogous Wolff rearrangement to give a mixture of 6a-methyl-2,3,3a,6a-tetrahydrofuro[2,i-^>]furan-2-one (44) and 2-(2-methyl-3-furyl)acetic acid (43). Rhodium acetate catalyzed decomposition of l-diazo-3-(3-benzofuranyl)-2- propanone (84) and l-diazo-3-(2-benzofuranyl)-2-propanone (69)also allows for vinylogous Wolff rearrangement, a chemistry unseen in benzofuranyl systems with longer tethers. A number of interesting products were isolated from the trapping of intermediate ketenes. Decomposition of l-diazo-3-(3-benzothienyl)-2-propanone (100) resulted in the formation of 2,3-dihydro-l//-benzo[^]cyclopenta[^thiophen-2-one (102). However, in addition to (102), a dimer was also generated from the decomposition of l-diazo-3-(2- benzothienyl)-2-propanone (109). The insight into the mechanistic underpinnings of the above reactions are provided by molecular modeling at a PM3 level.
Resumo:
Madagascar periwinkle (Catharanthus roseus) produces the well known and remarkably complex dimeric anticancer alkaloids vinblastine and vincristine that are derived by coupling vindoline and catharanthine monomers. This thesis describes the novel application of carborundum abrasion (CA) technique as a tool for large scale isolation of leaf epidermis enriched proteins. This technique was used to facilitate the purification to apparent homogeneity of 16-hydroxytabersonine-16-0-methyltransferse (l60MT) that catalyses the second step in the 6 step pathway that converts tabersonine into vindoline. This versatile tool was also used to harvest leaf epidermis enriched mRNAs that facilitated the molecular cloning of the 160MT. Functional expression and biochemical characterization of recombinant 160MT enzyme showed that it had a very narrow substrate specificity and high affinity for 16-hydroxytabersonine, since other closely related monoterpene indole alkaloids (MIAs) did not act as substrates. In addition to allowing the cloning of this gene, CA technique clearly showed that 160MT is predominantly expressed in Catharanthus leaf epidermis, in contrast to several other OMTs that appear to be expressed in other Catharanthus tissues. The results provide compelling evidence that most of the pathway for vindoline biosynthesis including the 0- methylation of 16-hydroxytabersonine occurs exclusively in leaf epidermis, with subsequent steps occurring in other leaf cell types. Small molecule O-methyltransferases (OMTs) (E.C. 2.1.1.6.x) catalyze the transfer of the reactive methyl group of S-adenosyl-L-methionine (SAM) to free hydroxyl groups of acceptor molecules. Plant OMTs, unlike their monomeric mammalian homologues, exist as functional homodimers. While the biological advantages for dimer fonnation with plant OMTs remain to be established, studies with OMTs from the benzylisoquinoline producing plant, Thalictrum tuberosum, showed that co-expression of 2 recombinant OMTs produced novel substrate specificities not found when each rOMT was expressed individually (Frick, Kutchan, 1999) . These results suggest that OMTs can fonn heterodimers that confer novel substrate specificities not possible with the homodimer alone. The present study describes a 160MT model based strategy attempting to modify the substrate specificity by site-specific mutagenesis. Our failure to generate altered substrate acceptance profiles in our 160MT mutants has lead us to study the biochemical properties ofhomodimers and heterodimers. Experimental evidence is provided to show that active sites found on OMT dimers function independently and that bifunctional heterodimeric OMTs may be fonned in vivo to produce a broader and more diverse range of natural products in plants.
Resumo:
There is considerable interest in intramolecular energy transfer, especially in complexes which absorb visible light, because it is crucial to the better understanding of photoharvesting systems in photosynthetic organisms and for utilizing solar energy as well. Porphyrin dimers represent one of the best systems for the exploration of light-induced intramolecular energy transfer. Many kinds of porphyrins and porphyrin dimers have been studied over the past decade, however little attention has been paid to the influence of paramagnetic metals on the behavior of their excited states. In this thesis, Electron Paramagnetic Resonance Spectroscopy (EPR) is used to study such compounds. After light irradiation, porphyrins easily produce a variety of excited states, which are spin polarized and can be detected by the time-resolved (TR) EPR technique. The spin polarized results for vanadyl porphyrins, their electrostatically-coupled dimers, a covalently-linked copper porphyrin-free base porphyrin dimer, and free base porphyrins are presented in this thesis. From these results we can conclude that the spin polarization patterns of vanadyl porphyrins come primarily from the trip-quartet state generated by intersystem crossing (lSC) from the excited sing-doublet state through the trip-doublet state. The spin polarization pattern of electrostatically-coupled vanadyl porphyrin-free base porphyrin dimer is produced by the triplet state of the free base porphyrin half which is coupled to the unpaired electron on the vanadyl ion.
Resumo:
The Arabidopsis NPRI protein regulates systemic acquired resistance dependent on salicylic acid. Analyses by plant two-hybrid analysis in vivo and pull-down assays in vitro showed that the BTB/POZ domain of NPRI at the N-terminus serves as an autoinhibitory domain to negate the function of the transactivation domain at the C-terminus through direct binding of these two domains. I t was also shown that the binding of the BTB/POZ domain to the C-terminus of NPRI was abolished by SA treatment, suggesting that SA could interfere directly with this binding. By gel filtration, it was demonstrated that SA affects the conformation of full-length NPRl , confirming the role of NPRI as an SA receptor. Gel filtration analysis also indicated that NPRI could be converted from an oligomer to a dimer with SA treatment. Furthermore, one N-terminal deletion ~513 has been shown to act as a metal-binding protein and its two Cys-521 and Cys-529 are important for binding to Ni 2 + by pull-down assays.