999 resultados para Selway Bitterroot Wilderness Area
Resumo:
A total of 160 Clarias lazera were collected with line hood between April and June 1984 from the Niger Delta area and observed for the presence of parasites. The results revealed the presence of three classes of endo-parasites: Trematodes (47%), nematodes (46%) and cestodes (7%). It was found that, the parasites have great affinity for the spleen (34%) and the liver (28.3%). Also, smaller fish habored more parasites than large fish. Though the investigation is still continuing, the study reveals the presence of parasites in Clarias and calls for measures to prevent wide-spread infestation in fish ponds and suggests treatment of infested fish
Resumo:
The effects of some socio-economic variables on the performance of artisanal fishermen were investigated. The variables include the age-structure of the fishermen, level of investment, educational background, membership of co-operative societies and marketing arrangements. All these variables were found to be crucial to productivity in the artisanal fishing sector
Resumo:
A pilot fish culture project was initiated by Shell Petroleum Development Company of Nigeria Limited in 1981 with specific aims and objectives. Site selection, survey, pond construction method and fish production with regards to experiences gathered and gained, problems and solutions so far obtained are discussed. Trials of freshwater fish species to check their adaptability to brackishwater ponds were carried out and the promising results of the growth rate of these species when compared with the traditional local brackishwater species selected for culture are reported. The extension programme so far carried out is briefly described
Resumo:
Fish farming practices in the Lake Kainji Area of Nigeria are categorized under seven main cultural facilities, namely, earthen ponds/reservoirs, indoor/outdoor concrete tanks, plastic tanks, floating cages/hapas, aquaria, sewage and feral conditions. The presence of Bacteria isolates associated with diseased fish conditions varied significantly (P<0.05) with different cultural facilities. The highest bacteria isolates and bacterial disease incidence, 33% and 46% respectively, was associated with diseased fish in the indoor/outdoor concrete tanks. The least incidence of bacteria isolates (3.5%) and blue bacterial disease (3%) was associated with diseased fish in the aquaria and feral conditions. Nine Gram-negative and two Gram-positive bacteria genera were isolated during this investigation. Pseudomonas spp. (23.6%) and Staphylococcus spp. (14.3%), were the predominant Gram-negative and Gram-positive bacteria genera in the different cultural facilities, respectively. This paper highlights the relevance of occurrence and distribution of bacteria isolates associated with diseased fish to bacterial fish diseases under different cultural facilities
Resumo:
Fish smoking, as a traditional occupation of fishermen and women in Kainji Lake Area (Nigeria) is done using simple traditional ovens called 'Banda', the fuel for the smoking being almost hundred percent dependent on wood. A simple modification was made to the traditional 'Banda' oven using a damper to prevent burning of the fish. A comparison of the improved and the traditional 'Banda' was made. The results indicate that fuel wood consumption was reduced 52 percent by using the improved 'Banda', which implied that 50 percent of fish processor's income could be saved through the adoption of this technology. The most important advantage of the improved kiln, fuel wood conservation, represents for fishers a problem of an economic importance. Whilst they are aware that it is becoming much more difficult to get the needed fuel wood, the children can still conveniently collect enough wood for both home use and processing activities. The cost of the components of the improved kiln, when compared with the traditional version may be considered quite significant, and hence the reluctance of the fish processors in constructing similar ones. Selected blacksmiths were trained to continue the fabrication of the kiln component. The training was carried out to assure that the improved kiln will be constructed even after the project will end to support the fabrication
Resumo:
The findings are presented of a study conducted to assess the post harvest losses in Shiroro Lake, Nigeria. The major objectives were to identify and quantify the types of losses, to provide recommendations that would enhance formulation of policy guidelines for utilization and exploitation of the declining fishery resources of the lake
Resumo:
Details are given of a study conducted in the framework of the Kainji Lake Fisheries Promotion Project to boost income from alternative sources. The project identified 'improved poultry keeping' as suitable for introduction around the Kainji Lake area. In the long term, the programme will assist increasing especially the income of female members of fishing families, since poultry is kept in the villages mainly by women. (PDF contains 35 pages)
Resumo:
The result of this preliminary report highlighted prevalence of an endoparasite (nematode) in order of prevalence. Four non-scaly commercially important fishes, namely:- Clarias sp Hererobranchus bidorsalis. Bagrus sp and Synodontis sp.; and nine scaly fishes, namely; - Gymnarchus sp, Protopterus annectus. Tilapia sp, Lates niloticus. Heterotis niloticus, Mormyrops sp, Channa Obscurus, Labeo sp and Distochodus rostratus of freshwater fadama of the Bida Area, Niger State. The extent of the spread was evaluated. While the reactions of fishermen, middlemen (fishmongers) and fish-eaters in order to appreciate the impacts of the nematode infested fishes on the populace were recorded. The paper suggested areas for further studies towards evoking desirable management strategies for the study area as follows. Such suggested areas are:- Identification and confirmation of the nematode species; life cycle of the nematode species; influence of season on the prevalence, spread and pathology in the nematode infested fishes, etc
Resumo:
Non-governmental organizations (NGOs) are now major players in the realm of environmental conservation. While many environmental NGOs started as national organizations focused around single-species protection, governmental advocacy, and preservation of wilderness, the largest now produce applied conservation science and work with national and international stakeholders to develop conservation solutions that work in tandem with local aspirations. Marine managed areas (MMAs) are increasingly being used as a tool to manage anthropogenic stressors on marine resources and protect marine biodiversity. However, the science of MMA is far from complete. Conservation International (CI) is concluding a 5 year, $12.5 million dollar Marine Management Area Science (MMAS) initiative. There are 45 scientific projects recently completed, with four main “nodes” of research and conservation work: Panama, Fiji, Brazil, and Belize. Research projects have included MMA ecological monitoring, socioeconomic monitoring, cultural roles monitoring, economic valuation studies, and others. MMAS has the goals of conducting marine management area research, building local capacity, and using the results of the research to promote marine conservation policy outcomes at project sites. How science is translated into policy action is a major area of interest for science and technology scholars (Cash and Clark 2001; Haas 2004; Jasanoff et al. 2002). For science to move policy there must be work across “boundaries” (Jasanoff 1987). Boundaries are defined as the “socially constructed and negotiated borders between science and policy, between disciplines, across nations, and across multiple levels” (Cash et al. 2001). Working across the science-policy boundary requires boundary organizations (Guston 1999) with accountability to both sides of the boundary, among other attributes. (Guston 1999; Clark et al. 2002). This paper provides a unique case study illustrating how there are clear advantages to collaborative science. Through the MMAS initiative, CI built accountability into both sides of the science-policy boundary primarily through having scientific projects fed through strong in-country partners and being folded into the work of ongoing conservation processes. This collaborative, boundary-spanning approach led to many advantages, including cost sharing, increased local responsiveness and input, better local capacity building, and laying a foundation for future conservation outcomes. As such, MMAS can provide strong lessons for other organizations planning to get involved in multi-site conservation science. (PDF contains 3 pages)
Resumo:
The lateral intraparietal area (LIP) of macaque posterior parietal cortex participates in the sensorimotor transformations underlying visually guided eye movements. Area LIP has long been considered unresponsive to auditory stimulation. However, recent studies have shown that neurons in LIP respond to auditory stimuli during an auditory-saccade task, suggesting possible involvement of this area in auditory-to-oculomotor as well as visual-to-oculomotor processing. This dissertation describes investigations which clarify the role of area LIP in auditory-to-oculomotor processing.
Extracellular recordings were obtained from a total of 332 LIP neurons in two macaque monkeys, while the animals performed fixation and saccade tasks involving auditory and visual stimuli. No auditory activity was observed in area LIP before animals were trained to make saccades to auditory stimuli, but responses to auditory stimuli did emerge after auditory-saccade training. Auditory responses in area LIP after auditory-saccade training were significantly stronger in the context of an auditory-saccade task than in the context of a fixation task. Compared to visual responses, auditory responses were also significantly more predictive of movement-related activity in the saccade task. Moreover, while visual responses often had a fast transient component, responses to auditory stimuli in area LIP tended to be gradual in onset and relatively prolonged in duration.
Overall, the analyses demonstrate that responses to auditory stimuli in area LIP are dependent on auditory-saccade training, modulated by behavioral context, and characterized by slow-onset, sustained response profiles. These findings suggest that responses to auditory stimuli are best interpreted as supramodal (cognitive or motor) responses, rather than as modality-specific sensory responses. Auditory responses in area LIP seem to reflect the significance of auditory stimuli as potential targets for eye movements, and may differ from most visual responses in the extent to which they arc abstracted from the sensory parameters of the stimulus.
Resumo:
The temporal structure of neuronal spike trains in the visual cortex can provide detailed information about the stimulus and about the neuronal implementation of visual processing. Spike trains recorded from the macaque motion area MT in previous studies (Newsome et al., 1989a; Britten et al., 1992; Zohary et al., 1994) are analyzed here in the context of the dynamic random dot stimulus which was used to evoke them. If the stimulus is incoherent, the spike trains can be highly modulated and precisely locked in time to the stimulus. In contrast, the coherent motion stimulus creates little or no temporal modulation and allows us to study patterns in the spike train that may be intrinsic to the cortical circuitry in area MT. Long gaps in the spike train evoked by the preferred direction motion stimulus are found, and they appear to be symmetrical to bursts in the response to the anti-preferred direction of motion. A novel cross-correlation technique is used to establish that the gaps are correlated between pairs of neurons. Temporal modulation is also found in psychophysical experiments using a modified stimulus. A model is made that can account for the temporal modulation in terms of the computational theory of biological image motion processing. A frequency domain analysis of the stimulus reveals that it contains a repeated power spectrum that may account for psychophysical and electrophysiological observations.
Some neurons tend to fire bursts of action potentials while others avoid burst firing. Using numerical and analytical models of spike trains as Poisson processes with the addition of refractory periods and bursting, we are able to account for peaks in the power spectrum near 40 Hz without assuming the existence of an underlying oscillatory signal. A preliminary examination of the local field potential reveals that stimulus-locked oscillation appears briefly at the beginning of the trial.
Resumo:
Cells in the lateral intraparietal cortex (LIP) of rhesus macaques respond vigorously and in spatially-tuned fashion to briefly memorized visual stimuli. Responses to stimulus presentation, memory maintenance, and task completion are seen, in varying combination from neuron to neuron. To help elucidate this functional segmentation a new system for simultaneous recording from multiple neighboring neurons was developed. The two parts of this dissertation discuss the technical achievements and scientific discoveries, respectively.
Technology. Simultanous recordings from multiple neighboring neurons were made with four-wire bundle electrodes, or tetrodes, which were adapted to the awake behaving primate preparation. Signals from these electrodes were partitionable into a background process with a 1/f-like spectrum and foreground spiking activity spanning 300-6000 Hz. Continuous voltage recordings were sorted into spike trains using a state-of-the-art clustering algorithm, producing a mean of 3 cells per site. The algorithm classified 96% of spikes correctly when tetrode recordings were confirmed with simultaneous intracellular signals. Recording locations were verified with a new technique that creates electrolytic lesions visible in magnetic resonance imaging, eliminating the need for histological processing. In anticipation of future multi-tetrode work, the chronic chamber microdrive, a device for long-term tetrode delivery, was developed.
Science. Simultaneously recorded neighboring LIP neurons were found to have similar preferred targets in the memory saccade paradigm, but dissimilar peristimulus time histograms, PSTH). A majority of neighboring cell pairs had a difference in preferred directions of under 45° while the trial time of maximal response showed a broader distribution, suggesting homogeneity of tuning with het erogeneity of function. A continuum of response characteristics was present, rather than a set of specific response types; however, a mapping experiment suggests this may be because a given cell's PSTH changes shape as well as amplitude through the response field. Spike train autocovariance was tuned over target and changed through trial epoch, suggesting different mechanisms during memory versus background periods. Mean frequency-domain spike-to-spike coherence was concentrated below 50 Hz with a significant maximum of 0.08; mean time-domain coherence had a narrow peak in the range ±10 ms with a significant maximum of 0.03. Time-domain coherence was found to be untuned for short lags (10 ms), but significantly tuned at larger lags (50 ms).
Resumo:
Neurons in the primate lateral intraparietal area (area LIP) carry visual, saccade-related and eye position activities. The visual and saccade activities are anchored in a retinotopic framework and the overall response magnitude is modulated by eye position. It was proposed that the modulation by eye position might be the basis of a distributed coding of target locations in a head-centered space. Other recording studies demonstrated that area LIP is involved in oculomotor planning. These results overall suggest that area LIP transforms sensory information for motor functions. In this thesis I further explore the role of area LIP in processing saccadic eye movements by observing the effects of reversible inactivation of this area. Macaque monkeys were trained to do visually guided and memory saccades and a double saccade task to examine the use of eye position signal. Finally, by intermixing visual saccades with trials in which two targets were presented at opposite sides of the fixation point, I examined the behavior of visual extinction.
In chapter 2, I will show that lesion of area LIP results in increased latency of contralesional visual and memory saccades. Contralesional memory saccades are also hypometric and slower in velocity. Moreover, the impairment of memory saccades does not vary with the duration of the delay period. This suggests that the oculomotor deficits observed after inactivation of area LIP is not due to the disruption of spatial memory.
In chapter 3, I will show that lesion of area LIP does not severely affect the processing of spontaneous eye movement. However, the monkeys made fewer contralesional saccades and tended to confine their gaze to the ipsilesional field after inactivation of area LIP. On the other hand, lesion of area LIP results in extinction of the contralesional stimulus. When the initial fixation position was varied so that the retinal and spatial locations of the targets could be dissociated, it was found that the extinction behavior could best be described in a head-centered coordinate.
In chapter 4, I will show that inactivation of area LIP disrupts the use of eye position signal to compute the second movement correctly in the double saccade task. If the first saccade steps into the contralesional field, the error rate and latency of the second saccade are both increased. Furthermore, the direction of the first eye movement largely does not have any effect on the impairment of the second saccade. I will argue that this study provides important evidence that the extraretinal signal used for saccadic localization is eye position rather than a displacement vector.
In chapter 5, I will demonstrate that in parietal monkeys the eye drifts toward the lesion side at the end of the memory saccade in darkness. This result suggests that the eye position activity in the posterior parietal cortex is active in nature and subserves gaze holding.
Overall, these results further support the view that area LIP neurons encode spatial locations in a craniotopic framework and is involved in processing voluntary eye movements.
Resumo:
In Washington State, the Department of Natural Resources (WA DNR) is responsible for managing state-owned aquatic lands. Aquatic reserves are one of many Marine Protected Area (MPA) designations in WA State that aim to protect sensitive aquatic and ecological habitat. We analyzed the designation and early planning processes of WA State aquatic reserves, identified gaps in the processes, and recommend action to improve the WA State aquatic reserve early planning approach. (PDF contains 4 pages)