913 resultados para Selections oriented
Resumo:
Service Oriented Computing is a new programming paradigm for addressing distributed system design issues. Services are autonomous computational entities which can be dynamically discovered and composed in order to form more complex systems able to achieve different kinds of task. E-government, e-business and e-science are some examples of the IT areas where Service Oriented Computing will be exploited in the next years. At present, the most credited Service Oriented Computing technology is that of Web Services, whose specifications are enriched day by day by industrial consortia without following a precise and rigorous approach. This PhD thesis aims, on the one hand, at modelling Service Oriented Computing in a formal way in order to precisely define the main concepts it is based upon and, on the other hand, at defining a new approach, called bipolar approach, for addressing system design issues by synergically exploiting choreography and orchestration languages related by means of a mathematical relation called conformance. Choreography allows us to describe systems of services from a global view point whereas orchestration supplies a means for addressing such an issue from a local perspective. In this work we present SOCK, a process algebra based language inspired by the Web Service orchestration language WS-BPEL which catches the essentials of Service Oriented Computing. From the definition of SOCK we will able to define a general model for dealing with Service Oriented Computing where services and systems of services are related to the design of finite state automata and process algebra concurrent systems, respectively. Furthermore, we introduce a formal language for dealing with choreography. Such a language is equipped with a formal semantics and it forms, together with a subset of the SOCK calculus, the bipolar framework. Finally, we present JOLIE which is a Java implentation of a subset of the SOCK calculus and it is part of the bipolar framework we intend to promote.
Resumo:
Traditional software engineering approaches and metaphors fall short when applied to areas of growing relevance such as electronic commerce, enterprise resource planning, and mobile computing: such areas, in fact, generally call for open architectures that may evolve dynamically over time so as to accommodate new components and meet new requirements. This is probably one of the main reasons that the agent metaphor and the agent-oriented paradigm are gaining momentum in these areas. This thesis deals with the engineering of complex software systems in terms of the agent paradigm. This paradigm is based on the notions of agent and systems of interacting agents as fundamental abstractions for designing, developing and managing at runtime typically distributed software systems. However, today the engineer often works with technologies that do not support the abstractions used in the design of the systems. For this reason the research on methodologies becomes the basic point in the scientific activity. Currently most agent-oriented methodologies are supported by small teams of academic researchers, and as a result, most of them are in an early stage and still in the first context of mostly \academic" approaches for agent-oriented systems development. Moreover, such methodologies are not well documented and very often defined and presented only by focusing on specific aspects of the methodology. The role played by meta- models becomes fundamental for comparing and evaluating the methodologies. In fact a meta-model specifies the concepts, rules and relationships used to define methodologies. Although it is possible to describe a methodology without an explicit meta-model, formalising the underpinning ideas of the methodology in question is valuable when checking its consistency or planning extensions or modifications. A good meta-model must address all the different aspects of a methodology, i.e. the process to be followed, the work products to be generated and those responsible for making all this happen. In turn, specifying the work products that must be developed implies dening the basic modelling building blocks from which they are built. As a building block, the agent abstraction alone is not enough to fully model all the aspects related to multi-agent systems in a natural way. In particular, different perspectives exist on the role that environment plays within agent systems: however, it is clear at least that all non-agent elements of a multi-agent system are typically considered to be part of the multi-agent system environment. The key role of environment as a first-class abstraction in the engineering of multi-agent system is today generally acknowledged in the multi-agent system community, so environment should be explicitly accounted for in the engineering of multi-agent system, working as a new design dimension for agent-oriented methodologies. At least two main ingredients shape the environment: environment abstractions - entities of the environment encapsulating some functions -, and topology abstractions - entities of environment that represent the (either logical or physical) spatial structure. In addition, the engineering of non-trivial multi-agent systems requires principles and mechanisms for supporting the management of the system representation complexity. These principles lead to the adoption of a multi-layered description, which could be used by designers to provide different levels of abstraction over multi-agent systems. The research in these fields has lead to the formulation of a new version of the SODA methodology where environment abstractions and layering principles are exploited for en- gineering multi-agent systems.
Resumo:
In the collective imaginaries a robot is a human like machine as any androids in science fiction. However the type of robots that you will encounter most frequently are machinery that do work that is too dangerous, boring or onerous. Most of the robots in the world are of this type. They can be found in auto, medical, manufacturing and space industries. Therefore a robot is a system that contains sensors, control systems, manipulators, power supplies and software all working together to perform a task. The development and use of such a system is an active area of research and one of the main problems is the development of interaction skills with the surrounding environment, which include the ability to grasp objects. To perform this task the robot needs to sense the environment and acquire the object informations, physical attributes that may influence a grasp. Humans can solve this grasping problem easily due to their past experiences, that is why many researchers are approaching it from a machine learning perspective finding grasp of an object using information of already known objects. But humans can select the best grasp amongst a vast repertoire not only considering the physical attributes of the object to grasp but even to obtain a certain effect. This is why in our case the study in the area of robot manipulation is focused on grasping and integrating symbolic tasks with data gained through sensors. The learning model is based on Bayesian Network to encode the statistical dependencies between the data collected by the sensors and the symbolic task. This data representation has several advantages. It allows to take into account the uncertainty of the real world, allowing to deal with sensor noise, encodes notion of causality and provides an unified network for learning. Since the network is actually implemented and based on the human expert knowledge, it is very interesting to implement an automated method to learn the structure as in the future more tasks and object features can be introduced and a complex network design based only on human expert knowledge can become unreliable. Since structure learning algorithms presents some weaknesses, the goal of this thesis is to analyze real data used in the network modeled by the human expert, implement a feasible structure learning approach and compare the results with the network designed by the expert in order to possibly enhance it.
Resumo:
In the most recent years there is a renovate interest for Mixed Integer Non-Linear Programming (MINLP) problems. This can be explained for different reasons: (i) the performance of solvers handling non-linear constraints was largely improved; (ii) the awareness that most of the applications from the real-world can be modeled as an MINLP problem; (iii) the challenging nature of this very general class of problems. It is well-known that MINLP problems are NP-hard because they are the generalization of MILP problems, which are NP-hard themselves. However, MINLPs are, in general, also hard to solve in practice. We address to non-convex MINLPs, i.e. having non-convex continuous relaxations: the presence of non-convexities in the model makes these problems usually even harder to solve. The aim of this Ph.D. thesis is to give a flavor of different possible approaches that one can study to attack MINLP problems with non-convexities, with a special attention to real-world problems. In Part 1 of the thesis we introduce the problem and present three special cases of general MINLPs and the most common methods used to solve them. These techniques play a fundamental role in the resolution of general MINLP problems. Then we describe algorithms addressing general MINLPs. Parts 2 and 3 contain the main contributions of the Ph.D. thesis. In particular, in Part 2 four different methods aimed at solving different classes of MINLP problems are presented. Part 3 of the thesis is devoted to real-world applications: two different problems and approaches to MINLPs are presented, namely Scheduling and Unit Commitment for Hydro-Plants and Water Network Design problems. The results show that each of these different methods has advantages and disadvantages. Thus, typically the method to be adopted to solve a real-world problem should be tailored on the characteristics, structure and size of the problem. Part 4 of the thesis consists of a brief review on tools commonly used for general MINLP problems, constituted an integral part of the development of this Ph.D. thesis (especially the use and development of open-source software). We present the main characteristics of solvers for each special case of MINLP.
Resumo:
Nell'ambito delle Service-Oriented Architecture, il linguaggio JOLIE, assieme al suo editor jEye, consentono la realizzazione di orchestratori. Questa tesi realizza (modello e implementazione) il supporto per l'Ambiente Dati
Resumo:
Generic programming is likely to become a new challenge for a critical mass of developers. Therefore, it is crucial to refine the support for generic programming in mainstream Object-Oriented languages — both at the design and at the implementation level — as well as to suggest novel ways to exploit the additional degree of expressiveness made available by genericity. This study is meant to provide a contribution towards bringing Java genericity to a more mature stage with respect to mainstream programming practice, by increasing the effectiveness of its implementation, and by revealing its full expressive power in real world scenario. With respect to the current research setting, the main contribution of the thesis is twofold. First, we propose a revised implementation for Java generics that greatly increases the expressiveness of the Java platform by adding reification support for generic types. Secondly, we show how Java genericity can be leveraged in a real world case-study in the context of the multi-paradigm language integration. Several approaches have been proposed in order to overcome the lack of reification of generic types in the Java programming language. Existing approaches tackle the problem of reification of generic types by defining new translation techniques which would allow for a runtime representation of generics and wildcards. Unfortunately most approaches suffer from several problems: heterogeneous translations are known to be problematic when considering reification of generic methods and wildcards. On the other hand, more sophisticated techniques requiring changes in the Java runtime, supports reified generics through a true language extension (where clauses) so that backward compatibility is compromised. In this thesis we develop a sophisticated type-passing technique for addressing the problem of reification of generic types in the Java programming language; this approach — first pioneered by the so called EGO translator — is here turned into a full-blown solution which reifies generic types inside the Java Virtual Machine (JVM) itself, thus overcoming both performance penalties and compatibility issues of the original EGO translator. Java-Prolog integration Integrating Object-Oriented and declarative programming has been the subject of several researches and corresponding technologies. Such proposals come in two flavours, either attempting at joining the two paradigms, or simply providing an interface library for accessing Prolog declarative features from a mainstream Object-Oriented languages such as Java. Both solutions have however drawbacks: in the case of hybrid languages featuring both Object-Oriented and logic traits, such resulting language is typically too complex, thus making mainstream application development an harder task; in the case of library-based integration approaches there is no true language integration, and some “boilerplate code” has to be implemented to fix the paradigm mismatch. In this thesis we develop a framework called PatJ which promotes seamless exploitation of Prolog programming in Java. A sophisticated usage of generics/wildcards allows to define a precise mapping between Object-Oriented and declarative features. PatJ defines a hierarchy of classes where the bidirectional semantics of Prolog terms is modelled directly at the level of the Java generic type-system.