968 resultados para Seasonal water demand
The N-15 natural abundance (delta N-15) of ecosystem samples reflects measures of water availability
Resumo:
We assembled a globally-derived data set for site-averaged foliar delta(15)N, the delta(15)N of whole surface mineral soil and corresponding site factors (mean annual rainfall and temperature, latitude, altitude and soil pH). The delta(15)N of whole soil was related to all of the site variables (including foliar delta(15)N) except altitude and, when regressed on latitude and rainfall, provided the best model of these data, accounting for 49% of the variation in whole soil delta(15)N. As single linear regressions, site-averaged foliar delta(15)N was more strongly related to rainfall than was whole soil delta(15)N. A smaller data set showed similar, negative correlations between whole soil delta(15)N, site-averaged foliar delta(15)N and soil moisture variations during a single growing season. The negative correlation between water availability (measured here by rainfall and temperature) and soil or plant delta(15)N fails at the landscape scale, where wet spots are delta(15)N-enriched relative to their drier surroundings. Here we present global and seasonal data, postulate a proximate mechanism for the overall relationship between water availability and ecosystem delta(15)N and, newly, a mechanism accounting for the highly delta(15)N-depleted values found in the foliage and soils of many wet/cold ecosystems. These hypotheses are complemented by documentation of the present gaps in knowledge, suggesting lines of research which will provide new insights into terrestrial N-cycling. Our conclusions are consistent with those of Austin and Vitousek (1998) that foliar (and soil) delta(15)N appear to be related to the residence time of whole ecosystem N.
Resumo:
It has been established that large numbers of certain trees can survive in the beds of rivers of northeastern Australia where a strongly seasonal distribution of precipitation causes extreme variations in flow on both a yearly and longer-term basis. In these rivers, minimal flow occurs throughout much of any year and for periods of up to several years, allowing the trees to become established and to adapt their form in order to facilitate their survival in environments that experience periodic inundation by fast-flowing, debris-laden water. Such trees (notably paperbark trees of the angiosperm genus Melaleuca) adopt a reclined to prostrate, downstream-trailing habit, have a multiple-stemmed form, modified crown with weeping foliage, development of thick, spongy bark, anchoring of roots into firm to lithified substrates beneath the channel floor, root regeneration, and develop in flow-parallel, linear groves. Individuals from within flow-parallel, linear groves are preserved in situ within the alluvial deposit of the river following burial and death. Four examples of in situ tree fossils within alluvial channel deposits in the Permian of eastern Australia demonstrate that specialised riverbed plant communities also existed at times in the geological past. These examples, from the Lower Permian Carmila Beds, Upper Permian Moranbah Coal Measures and Baralaba Coal Measures of central Queensland and the Upper Permian Newcastle Coal Measures of central New South Wales, show several of the characteristics of trees described from modern rivers in northeastern Australia, including preservation in closely-spaced groups. These properties, together with independent sedimentological evidence, suggest that the Permian trees were adapted to an environment affected by highly variable runoff, albeit in a more temperate climatic situation than the modem Australian examples. It is proposed that occurrences of fossil trees preserved in situ within alluvial channel deposits may be diagnostic of environments controlled by seasonal and longer-term variability in fluvial runoff, and hence may have value in interpreting aspects of palaeoclimate from ancient alluvial successions. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Retention of green leaf area in grain sorghum under post-anthesis drought, known as stay-green, is associated with greater biomass production, lodging resistance and yield. The stay-green phenomenon can be examined at a cell, leaf, or whole plant level. At a cell level, the retention of chloroplast proteins such as LHCP2, OEC33 and Rubisco until late in senescence has been reported in sorghum containing the KS19 source of stay-green, indicating that photosynthesis may be maintained for longer during senescence in these genotypes. At a leaf level, longevity of photosynthetic apparatus is intimately related to nitrogen (N) status. At a whole plant level, stay-green can be viewed as a consequence of the balance between N demand by the grain and N supply during grain filling. To examine some of these concepts, nine hybrids varying in the B35 and KS19 sources of stay-green were grown under a postanthesis water deficit. Genotypic variation in delayed onset and reduced rate of leaf senescence were explained by differences in specific leaf nitrogen (SLN) and N uptake during grain filling. Matching N supply from age-related senescence and N uptake during grain tilling with grain N demand found that the shortfall in N supply for grain filling was greater in the senescent than stay-green hybrids, resulting in more accelerated leaf senescence in the former. We hypothesise that increased N uptake by stay-green hybrids is a result of greater biomass accumulation during grain filling in response to increased sink demand (higher grain numbers) which, in turn, is the result of increased radiation use efficiency and transpiration efficiency due to higher SLN. Delayed leaf senescence resulting from higher SLN should, in turn, allow snore carbon and nitrogen to be allocated to the roots of stay-green hybrids during grain filling, thereby maintaining a greater capacity to extract N from the soil compared with senescent hybrids.
Resumo:
The role of shoot water status in mediating the decline in leaf elongation rate of nitrogen (N)-deprived barley plants was assessed. Plants were grown at two levels of N supply, with or without the application of pneumatic pressure to the roots. Applying enough pressure (balancing pressure) to keep xylem sap continuously bleeding from the cut surface of a leaf allowed the plants to remain at full turgor throughout the experiments. Plants from which N was withheld required a greater balancing pressure during both day and night. This difference in balancing pressure was greater at high (2.0 kPa) than low (1.2 kPa) atmospheric vapour pressure deficit (VPD). Pressurizing the roots did not prevent the decline in leaf elongation rate induced by withholding N at either high or low VPD. Thus low shoot water status did not limit leaf growth of N-deprived plants.
Resumo:
Seasonal climate forecasting offers potential for improving management of crop production risks in the cropping systems of NE Australia. But how is this capability best connected to management practice? Over the past decade, we have pursued participative systems approaches involving simulation-aided discussion with advisers and decision-makers. This has led to the development of discussion support software as a key vehicle for facilitating infusion of forecasting capability into practice. In this paper, we set out the basis of our approach, its implementation and preliminary evaluation. We outline the development of the discussion support software Whopper Cropper, which was designed for, and in close consultation with, public and private advisers. Whopper Cropper consists of a database of simulation output and a graphical user interface to generate analyses of risks associated with crop management options. The charts produced provide conversation pieces for advisers to use with their farmer clients in relation to the significant decisions they face. An example application, detail of the software development process and an initial survey of user needs are presented. We suggest that discussion support software is about moving beyond traditional notions of supply-driven decision support systems. Discussion support software is largely demand-driven and can compliment participatory action research programs by providing cost-effective general delivery of simulation-aided discussions about relevant management actions. The critical role of farm management advisers and dialogue among key players is highlighted. We argue that the discussion support concept, as exemplified by the software tool Whopper Cropper and the group processes surrounding it, provides an effective means to infuse innovations, like seasonal climate forecasting, into farming practice. Crown Copyright (C) 2002 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Leaf water relations responses to limited water supply were determined in 7-month-old plants of a dry inland provenance of Eucalyptus argophloia Blakely and in a humid coastal provenance (Gympie) and a dry inland provenance (Hungry Hills) of Eucalyptus cloeziana F. Muell. Each provenance of E. cloeziana exhibited a lower relative water content at the turgor loss point, a lower apoplastic water content, a smaller ratio of dry mass to turgid mass and a lower bulk modulus of elasticity than the single provenance of E. argophloia. Osmotic potential at full turgor and water potential at the turgor loss point were significantly lower in E. argophloia and the inland provenance of E. cloeziana than in the coastal provenance of E. cloeziana. There was limited osmotic adjustment in response to soil drying in E. cloeziana, but not in E. argophloia. Between-species differences in water relations parameters were larger than those between the E. cloeziana provenances. Both E. cloeziana provenances maintained turgor under moderate water stress through a combination of osmotic and elastic adjustments. Eucalyptus argophloia had more rigid cell walls and reached lower water potentials with less reduction in relative water content than either of the E. cloeziana provenances, thereby enabling it to extract water from dryer soils.
Resumo:
The objective of this study was to investigate how seasonally fluctuating environmental conditions influence the diving performance of the highly aquatic, bimodally respiring turtle Rheodytes leukops in a natural setting. Over four consecutive seasons (Austral autumn 2000 to summer 2001), the diving behaviour of adult turtles was recorded via pressure-sensitive time-depth recorders within Marlborough Creek, central Queensland, Australia. Short surfacing intervals recorded for R. leukops in winter suggest that the species utilizes aquatic respiration as an overwintering strategy to prevent the development of a metabolic acidosis during the long inactive dives observed during the season. As water temperature increases and aquatic P-O 2 decreases, R. leukops switches from facultative to obligate air-breathing, presumably because of the increased metabolic cost associated with aquatic respiration under summer conditions. Increases in mean surfacing time from winter to spring and summer are attributed to seasonal changes in behaviour possibly associated with foraging rather than to the physiological state of the turtle, given that no difference in median surfacing time among seasons was observed.
Resumo:
The main objective of this study was to characterize the organic matter present in raw water and along the treatment process, as well as its seasonal variation. A natural organic matter fractionation approach has been applied to Lever water treatment plant located in Douro River, in Oporto (Portugal). The process used was based on the sorption of dissolved organic matter in different types of ion exchange resins, DAX-8, DAX-4 and IRA-958, allowing its separation into four fractions: very hydrophobic acids (VHA), slightly hydrophobic acids (SHA), charged hydrophilic (CHA) and hydrophilic neutral (NEU). The dissolved organic carbon (DOC) determination was used to quantify dissolved organic matter. Samples were collected monthly, during approximately one year, from raw water captured at the surface and under the bed of the river, and after each step of the treatment: pre-filtration in sand/anthracite filters, ozonation, coagulation/flocculation, counter current dissolved air flotation and filtration (CoCoDAFF) and chlorination. The NEU fraction showed a seasonal variation, with maximum values in autumn for the sampling points corresponding to raw water captured at the surface and under the bed of the river. It was usually the predominating fraction and did not show a significant decrease throughout the treatment. Nevertheless their low concentration, the same occurred for the CHA and VHA fractions. There was an overall decrease in the SHA fraction throughout the water treatment (especially after CoCoDAFF and ozonation) as well as in the DOC. The TSUVA254 values obtained for raw water generally varied between 2.0 and 4.0 L mgC-1 m-1 and between 0.75 and 1.78 L mgC-1 m-1 for treated water. It was observed a decrease of TSUVA values along the treatment, especially after ozonation. These results may contribute to a further optimization in the process of treating water for human consumption.
Resumo:
Water covers over 70% of the Earth's surface, and is vital for all known forms of life. But only 3% of the Earth's water is fresh water, and less than 0.3% of all freshwater is in rivers, lakes, reservoirs and the atmosphere. However, rivers and lakes are an important part of fresh surface water, amounting to about 89%. In this Master Thesis dissertation, the focus is on three types of water bodies – rivers, lakes and reservoirs, and their water quality issues in Asian countries. The surface water quality in a region is largely determined both by the natural processes such as climate or geographic conditions, and the anthropogenic influences such as industrial and agricultural activities or land use conversion. The quality of the water can be affected by pollutants discharge from a specific point through a sewer pipe and also by extensive drainage from agriculture/urban areas and within basin. Hence, water pollutant sources can be divided into two categories: Point source pollution and Non-point source (NPS) pollution. Seasonal variations in precipitation and surface run-off have a strong effect on river discharge and the concentration of pollutants in water bodies. For example, in the rainy season, heavy and persistent rain wash off the ground, the runoff flow increases and may contain various kinds of pollutants and, eventually, enters the water bodies. In some cases, especially in confined water bodies, the quality may be positive related with rainfall in the wet season, because this confined type of fresh water systems allows high dilution of pollutants, decreasing their possible impacts. During the dry season, the quality of water is largely related to industrialization and urbanization pollution. The aim of this study is to identify the most common water quality problems in Asian countries and to enumerate and analyze the methodologies used for assessment of water quality conditions of both rivers and confined water bodies (lakes and reservoirs). Based on the evaluation of a sample of 57 papers, dated between 2000 and 2012, it was found that over the past decade, the water quality of rivers, lakes, and reservoirs in developing countries is being degraded. Water pollution and destruction of aquatic ecosystems have caused massive damage to the functions and integrity of water resources. The most widespread NPS in Asian countries and those which have the greatest spatial impacts are urban runoff and agriculture. Locally, mine waste runoff and rice paddy are serious NPS problems. The most relevant point pollution sources are the effluents from factories, sewage treatment plant, and public or household facilities. It was found that the most used methodology was unquestionably the monitoring activity, used in 49 of analyzed studies, accounting for 86%. Sometimes, data from historical databases were used as well. It can be seen that taking samples from the water body and then carry on laboratory work (chemical analyses) is important because it can give an understanding of the water quality. 6 papers (11%) used a method that combined monitoring data and modeling. 6 papers (11%) just applied a model to estimate the quality of water. Modeling is a useful resource when there is limited budget since some models are of free download and use. In particular, several of used models come from the U.S.A, but they have their own purposes and features, meaning that a careful application of the models to other countries and a critical discussion of the results are crucial. 5 papers (9%) focus on a method combining monitoring data and statistical analysis. When there is a huge data matrix, the researchers need an efficient way of interpretation of the information which is provided by statistics. 3 papers (5%) used a method combining monitoring data, statistical analysis and modeling. These different methods are all valuable to evaluate the water quality. It was also found that the evaluation of water quality was made as well by using other types of sampling different than water itself, and they also provide useful information to understand the condition of the water body. These additional monitoring activities are: Air sampling, sediment sampling, phytoplankton sampling and aquatic animal tissues sampling. Despite considerable progress in developing and applying control regulations to point and NPS pollution, the pollution status of rivers, lakes, and reservoirs in Asian countries is not improving. In fact, this reflects the slow pace of investment in new infrastructure for pollution control and growing population pressures. Water laws or regulations and public involvement in enforcement can play a constructive and indispensable role in environmental protection. In the near future, in order to protect water from further contamination, rapid action is highly needed to control the various kinds of effluents in one region. Environmental remediation and treatment of industrial effluent and municipal wastewaters is essential. It is also important to prevent the direct input of agricultural and mine site runoff. Finally, stricter environmental regulation for water quality is required to support protection and management strategies. It would have been possible to get further information based in the 57 sample of papers. For instance, it would have been interesting to compare the level of concentrations of some pollutants in the diferente Asian countries. However the limit of three months duration for this study prevented further work to take place. In spite of this, the study objectives were achieved: the work provided an overview of the most relevant water quality problems in rivers, lakes and reservoirs in Asian countries, and also listed and analyzed the most common methodologies.
Resumo:
Master Thesis to obtain the Master degree in Chemical Engineering - Branch Chemical Processes
Resumo:
Dissertation presented to obtain the Ph.D degree in Biochemistry, Plant Physiology
Resumo:
Hepatitis A virus (HAV) infection constitutes a major public health problem in Brazil. The transmission of HAV is primarily by fecal-oral route so the water is an important vehicle of HAV dissemination. There is a great incidence of acute cases of hepatitis A in some areas of Brazil however the seasonal variation of these cases was not documented. The aim of this study was to determine the seasonality of HAV infection in Rio de Janeiro. From January 1999 to December 2001, 1731 blood samples were collected at the National Reference Center for Hepatitis Viruses in Brazil (NRCHV). These samples were tested by a commercial enzyme-immunoassay to detect anti-HAV IgM antibodies. Yearly positive rates were 33.74% in 1999, 32.19% in 2000, and 30.63% in 2001. A seasonal variation was recognized with the highest incidence in spring and summer. Furthermore a seasonal increase in incidence of HAV infection was found during the rainy season (December to March) because the index of rains is very high. It is concluded that HAV infections occur all year round with a peak during hot seasons with great number of rains.
Resumo:
Cyanobacteria deteriorate the water quality and are responsible for emerging outbreaks and epidemics causing harmful diseases in Humans and animals because of their toxins. Microcystin-LR (MCT) is one of the most relevant cyanotoxin, being the most widely studied hepatotoxin. For safety purposes, the World Health Organization recommends a maximum value of 1 μg L−1 of MCT in drinking water. Therefore, there is a great demand for remote and real-time sensing techniques to detect and quantify MCT. In this work a Fabry–Pérot sensing probe based on an optical fibre tip coated with a MCT selective thin film is presented. The membranes were developed by imprinting MCT in a sol–gel matrix that was applied over the tip of the fibre by dip coating. The imprinting effect was obtained by curing the sol–gel membrane, prepared with (3-aminopropyl) trimethoxysilane (APTMS), diphenyl-dimethoxysilane (DPDMS), tetraethoxysilane (TEOS), in the presence of MCT. The imprinting effect was tested by preparing a similar membrane without template. In general, the fibre Fabry–Pérot with a Molecular Imprinted Polymer (MIP) sensor showed low thermal effect, thus avoiding the need of temperature control in field applications. It presented a linear response to MCT concentration within 0.3–1.4 μg L−1 with a sensitivity of −12.4 ± 0.7 nm L μg−1. The corresponding Non-Imprinted Polymer (NIP) displayed linear behaviour for the same MCT concentration range, but with much less sensitivity, of −5.9 ± 0.2 nm L μg−1. The method shows excellent selectivity for MCT against other species co-existing with the analyte in environmental waters. It was successfully applied to the determination of MCT in contaminated samples. The main advantages of the proposed optical sensor include high sensitivity and specificity, low-cost, robustness, easy preparation and preservation.
Resumo:
Gravity Recovery and Climate Experiment (GRACE) mission is dedicated to measuring temporal variations of the Earth's gravity field. In this study, the Stokes coefficients made available by Groupe de Recherche en Géodésie Spatiale (GRGS) at a 10-day interval were converted into equivalent water height (EWH) for a ~4-year period in the Amazon basin (from July-2002 to May-2006). The seasonal amplitudes of EWH signal are the largest on the surface of Earth and reach ~ 1250mm at that basin's center. Error budget represents ~130 mm of EWH, including formal errors on Stokes coefficient, leakage errors (12 ~ 21 mm) and spectrum truncation (10 ~ 15 mm). Comparison between in situ river level time series measured at 233 ground-based hydrometric stations (HS) in the Amazon basin and vertically-integrated EWH derived from GRACE is carried out in this paper. Although EWH and HS measure different water bodies, in most of the cases a high correlation (up to ~80%) is detected between the HS series and EWH series at the same site. This correlation allows adjusting linear relationships between in situ and GRACE-based series for the major tributaries of the Amazon river. The regression coefficients decrease from up to down stream along the rivers reaching the theoretical value 1 at the Amazon's mouth in the Atlantic Ocean. The variation of the regression coefficients versus the distance from estuary is analysed for the largest rivers in the basin. In a second step, a classification of the proportionality between in situ and GRACE time-series is proposed.
Resumo:
Lakes play an important role in biogeochemical, ecological and hydrological processes in the river-floodplain system. The aim of this study was to evaluate the dynamics of the limnological conditions of Catalão Lake, an Amazon floodplain lake. Thus, some of the main limnological environment variables (O2, temperature, pH, nutrient, electrical conductivity) of the Catalão Lake were analyzed under temporal and spacial scales. The study was conducted between November/2004 and August/2005. Sampling excursion were carried out every three months; one excursion for each of the four different hydrological periods (low water, rising water, high water and falling water). Sampling points were chosen so that it could be obtained a gradient of the distance from Negro River. Limnological profiles in Catalão Lake showed generally acidic to slightly alcaline water, with low levels of dissolved oxygen and low concentrations of soluble reactive phosphorous. The Negro River seems to exert the main influence during the rising water period, while the Solimões River is the principal controlling river during peak water. The Principal Component Analysis (PCA) grouped the seasonal collections by hydrological period, showing the formation of a north-south spatial gradient within the lake in relation to the limnological variables. Multivariate dispersion analysis based on distance-to-centroid method demonstrated an increase in similarity over the course of the hydrological cycle, as the lake was inundated in response to the flood pulse of the main river channels. However, the largest spatial homogeneity in the lake was observed in the epilimnion layer, during the falling water period. The daily analysis of variation indicated an oligomitic pattern during the years in which the lake was permanently connected to the Negro River. Although Catalão Lake receives large quantities of both black water from the Negro River and sediment-filled water from the Solimões River, the physical and chemical characteristics of the lake are more similar to those of the Solimões (várzea lake) than the Negro (blackwater lake).