351 resultados para Sardine Lipases
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Aliquat 336, a liquid hydrophobic material, was used at different concentrations (0.5-3.0%, w/v) as an additive in the preparation of encapsulated lipase from Bacillus sp. ITP-001 on sol-gel silica matrices using tetraethoxysilane (TEOS) as the precursor. The resulting hydrophobic matrices and immobilized lipases were characterized with regard to specific surface area (BET method), adsorption-desorption isotherms, pore volume (Vp) and size (dp) by nitrogen adsorption (BJH method) and scanning electron microscopy (SEM). The catalytic activities and the corresponding coupling yields were assayed in the hydrolysis of olive oil. In comparison with pure silica matrices, the immobilization process in the presence of Aliquat 336 decreased the values for specific surface area and increased the values for pore specific volume (Vp) and mean pore diameter (dp). This behavior may be related to the partial adsorption of the enzyme on the external surface of the hydrophobic matrix as indicated by scanning electron microscopy. Aliquat 336 concentrations in the range from 0.5 to 1.5% (w/v) provided immobilized derivatives with higher coupling yields and better substrate affinity. The highest coupling yield (Y-A = 71%) was obtained for the immobilized enzyme prepared in the presence of 1.5% Aliquat which gave the following morphological properties: specific surface area = 183 m(2)/g, pore specific volume (Vp) = 0.36 cc/g and mean pore diameter (dp)= 91 angstrom. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Exiguobacterium antarcticum is a psychotropic bacterium isolated for the first time from microbial mats of Lake Fryxell in Antarctica. Many organisms of the genus Exiguobacterium are extremophiles and have properties of biotechnological interest, e. g., the capacity to adapt to cold, which make this genus a target for discovering new enzymes, such as lipases and proteases, in addition to improving our understanding of the mechanisms of adaptation and survival at low temperatures. This study presents the genome of E. antarcticum B7, isolated from a biofilm sample of Ginger Lake on King George Island, Antarctic peninsula.
Resumo:
Two microbial lipases from Burkholderia cepacia and Pseudomonas fluorescens were evaluated as catalysts for the enzymatic transesterification of beef tallow with ethanol and the most efficient lipase source was selected by taking into account the properties of the product to be used as fuel. Both lipases were immobilized on an epoxy silica-polyvinyl alcohol composite by covalent immobilization and used to perform the reactions under the following operational conditions: beef tallow-to-ethanol molar ratio of 1:9, 45 degrees C and 400 units of enzymatic activity per gram of fat. Products, characterized using Fourier Transform Infrared spectroscopy (FTIR), viscosimetry, thermogravimetry and H-1 NMR spectroscopy, suggested that the biodiesel sample obtained in the reaction catalyzed by Burkholderia cepacia lipase has the best set of properties for fuel usage.
Resumo:
Jun JC, Shin MK, Yao Q, Bevans-Fonti S, Poole J, Drager LF, Polotsky VY. Acute hypoxia induces hypertriglyceridemia by decreasing plasma triglyceride clearance in mice. Am J Physiol Endocrinol Metab 303: E377-E388, 2012. First published May 22, 2012; doi:10.1152/ajpendo.00641.2011.-Obstructive sleep apnea (OSA) induces intermittent hypoxia (IH) during sleep and is associated with elevated triglycerides (TG). We previously demonstrated that mice exposed to chronic IH develop elevated TG. We now hypothesize that a single exposure to acute hypoxia also increases TG due to the stimulation of free fatty acid (FFA) mobilization from white adipose tissue (WAT), resulting in increased hepatic TG synthesis and secretion. Male C57BL6/J mice were exposed to FiO(2) = 0.21, 0.17, 0.14, 0.10, or 0.07 for 6 h followed by assessment of plasma and liver TG, glucose, FFA, ketones, glycerol, and catecholamines. Hypoxia dose-dependently increased plasma TG, with levels peaking at FiO(2) = 0.07. Hepatic TG levels also increased with hypoxia, peaking at FiO(2) = 0.10. Plasma catecholamines also increased inversely with FiO(2). Plasma ketones, glycerol, and FFA levels were more variable, with different degrees of hypoxia inducing WAT lipolysis and ketosis. FiO(2) = 0.10 exposure stimulated WAT lipolysis but decreased the rate of hepatic TG secretion. This degree of hypoxia rapidly and reversibly delayed TG clearance while decreasing [H-3]triolein-labeled Intralipid uptake in brown adipose tissue and WAT. Hypoxia decreased adipose tissue lipoprotein lipase (LPL) activity in brown adipose tissue and WAT. In addition, hypoxia decreased the transcription of LPL, peroxisome proliferator-activated receptor-gamma, and fatty acid transporter CD36. We conclude that acute hypoxia increases plasma TG due to decreased tissue uptake, not increased hepatic TG secretion.
Resumo:
Current studies about lipase production involve the use of agro-industrial residues and newly isolated microorganisms aimed at increasing economic attractiveness of the process. Based on these aspects, the main objective of this work is to perform the partial characterization of enzymatic extracts produced by a newly isolated Penicillium crustosum in solid-state fermentation. Lipase extract presented optimal temperature and pH of 37 A degrees C and 9-10, respectively. The concentrated enzymatic extract showed more stability at 25 A degrees C and pH 7. The enzymes kept 100% of their enzymatic activity until 60 days of storage at 4 and -10 A degrees C. The stability under calcium salts indicated that the hydrolytic activity presented decay with the increase of calcium concentration. The specificity under several substrates indicated good enzyme activities in triglycerides from C4 to C18.
Resumo:
Background: Metabolic predictors and the atherogenicity of oxidized LDL (oxLDL) and the specific antibodies against oxLDL (oxLDL Ab) are unclear and controversial. Methods: In 107 adults without atherosclerotic manifestations, we measured oxLDL and oxLDL Ab, and also the activities of CETP. PLTP, lipases and the carotid intima-media thickness (cIMT). Comparisons were performed for the studied parameters between the lowest and the highest tertile of oxLDL and oxLDL Ab, and the relationships between studied variables were evaluated. Results: Subjects with higher oxLDL Ab present reduced hepatic lipase activity and borderline increased cIMT. In the highest oxLDL tertile, besides the higher levels of total cholesterol, LDL-C and apoB100, we found reduced CETP activity and higher cIMT. A significant correlation between oxLDL Ab and cIMT, independent of oxLDL, and a borderline correlation between oxLDL and cIMT independent of oxLDL Ab were found. In the multivariate analysis, apoAl was a significant predictor of oxLDL Ab, in contrast to regulation of oxLDL by apoB100, PLTP and inverse of CETP. Conclusions: In adults without atherosclerotic disease, the metabolic regulation and carotid atherosclerosis of oxLDLAb and oxLDL groups, characterized a dual trait in oxLDL Ab, as a contributor to carotid atherosclerosis, much less so than oxidized LDL, and with a modest atheroprotective role. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Two microbial lipases from Burkholderia cepacia and Pseudomonas fluorescens were evaluated as catalysts for the enzymatic transesterification of beef tallow with ethanol and the most efficient lipase source was selected by taking into account the properties of the product to be used as fuel. Both lipases were immobilized on an epoxy silica-polyvinyl alcohol composite by covalent immobilization and used to perform the reactions under the following operational conditions: beef tallow-to-ethanol molar ratio of 1:9, 45ºC and 400 units of enzymatic activity per gram of fat. Products, characterized using Fourier Transform Infrared spectroscopy (FTIR), viscosimetry, thermogravimetry and ¹H NMR spectroscopy, suggested that the biodiesel sample obtained in the reaction catalyzed by Burkholderia cepacia lipase has the best set of properties for fuel usage.
Resumo:
The rising of cold water from deeper levels characterizes coastal upwelling systems. This flow makes nutrients available in the euphotic layer, which enhances phytoplankton production and growth. On the Brazilian coast, upwelling is most intense in the Cabo Frio region (RJ). The basic knowledge of this system was reviewed in accordance with concepts of biophysical interactions. The high frequency and amplitude of the prevailing winds are the main factor promoting the rise of South Atlantic Central Water, but meanders and eddies in the Brazil Current as well as local topography and coast line are also important. Upwelling events are common during spring/summer seasons. Primary biomass is exported by virtue of the water circulation and is also controlled by rapid zooplankton predation. Small pelagic fish regulate plankton growth and in their turn are preyed on by predatory fish. Sardine furnishes an important regional fish stock. Shoreline irregularities define the embayment formation of the Marine Extractive Reserve of Arraial do Cabo making it an area with evident different intensities of upwelled water that harbors high species diversity. Consequently, on a small spatial scale there are environments with tropical and subtropical features, a point to be explored as a particularity of this ecosystem.
Resumo:
Hundred forty-four Shaver White laying hens were used over a 4 week experimental period to investigate the effect of 3% of soybean oil, corn oil (MIL), canola oil, flaxseed oil (LIN), salmon oil (SAL) or tuna and sardine oil (SR/AT) added to the diets, upon the fatty acid egg yolk composition, blood plasma levels and incorporation time of each fatty acid into the egg yolk. Hens were allocated into 72 cages and the experimental design was a 6 x 6 randomized factorial model. Hens fed 3% of different oils, responded with increased polyunsaturated fatty acids omega 3 (ω-3 PUFAs), except for corn oil. The addition of flaxseed, soybean or corn oil into the diet increased the PUFAs levels into the egg yolk and in the blood plasma. Adding tuna and sardine oil into the diet increased the concentration of yolk saturated fatty acids. The levels of ω-3 PUFAs were increased in the tuna and sardine oil treatment, while the flaxseed oil increased the plasma fatty acids. The deposition of 349.28 mg/yolk of a-linolenic fatty acids (ALA) was higher in the group fed LIN, while the higher equal to 157.13 mg DHA/yolk was observed in group SR/AT. In the plasma, deposition increased from 0.33% (MIL) for 6.29% ALA (LIN), while that of DHA increase of 0.47% (MIL) for 4.24% (SAL) and 4.48% (SR/AT) and of 0.98% (MIL) for 6.14% (SR/AT) and 8.44% (LIN) of ω-3 PUFAs. The percentage of EPA into the yolk and plasma was higher for the hens fed 3% tuna and sardine oil diet, as well as the levels of yolk DHA. The concentration of DHA into the plasma was higher for the salmon and tuna/sardine oil treatments. The PUFAs yolk decreased during the first eight days of experiment, while the ω-3 PUFAs increased during the same period. The concentration of ALA increased until ten days of experiment, while the percentage of EPA and DHA increased up to the eighth experimental day
Resumo:
We investigated whether palmitoleic acid, a fatty acid that enhances whole body glucose disposal and suppresses hepatic steatosis, modulates triacylglycerol (TAG) metabolism in adipocytes. For this, both differentiated 3T3-L1 cells treated with either palmitoleic acid (16:1n7, 200 μM) or palmitic acid (16:0, 200 μM) for 24 h and primary adipocytes from wild-type or PPARα-deficient mice treated with 16:1n7 (300 mg•kg(-1)•day(-1)) or oleic acid (18:1n9, 300 mg•kg(-1)•day(-1)) by gavage for 10 days were evaluated for lipolysis, TAG, and glycerol 3-phosphate synthesis and gene and protein expression profile. Treatment of differentiated 3T3-L1 cells with 16:1n7, but not 16:0, increased basal and isoproterenol-stimulated lipolysis, mRNA levels of adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) and protein content of ATGL and pSer(660)-HSL. Such increase in lipolysis induced by 16:1n7, which can be prevented by pharmacological inhibition of PPARα, was associated with higher rates of PPARα binding to DNA. In contrast to lipolysis, both 16:1n7 and 16:0 increased fatty acid incorporation into TAG and glycerol 3-phosphate synthesis from glucose without affecting glyceroneogenesis and glycerokinase expression. Corroborating in vitro findings, treatment of wild-type but not PPARα-deficient mice with 16:1n7 increased primary adipocyte basal and stimulated lipolysis and ATGL and HSL mRNA levels. In contrast to lipolysis, however, 16:1n7 treatment increased fatty acid incorporation into TAG and glycerol 3-phosphate synthesis from glucose in both wild-type and PPARα-deficient mice. In conclusion, palmitoleic acid increases adipocyte lipolysis and lipases by a mechanism that requires a functional PPARα
Resumo:
La tesi è finalizzata ad una preliminare fase di sperimentazione di un algoritmo che, a partire da dati di acustica, sia in grado di classificare le specie di pesce presenti in cale mono e plurispecifiche. I dati sono stati acquisiti nella fascia costiera della Sicilia meridionale, durante alcune campagne di ricerca effettuate tra il 2002 e il 2011, dall’IAMC – CNR di Capo Granitola. Sono stati registrati i valori delle variabili ambientali e biotiche tramite metodologia acustica e della composizione dei banchi di pesci catturati tramite cale sperimentali: acciughe, sardine, suri, altre specie pelagiche e pesci demersali. La metodologia proposta per la classificazione dei segnali acustici nasce dalla fusione di logica fuzzy e teorema di Bayes, per dar luogo ad un approccio modellistico consistente in un compilatore naïve Bayes operante in ambiente fuzzy. Nella fattispecie si è proceduto alla fase di training del classificatore, mediante un learning sample di percentuali delle categorie ittiche sopra menzionate, e ai dati di alcune delle osservazioni acustiche, biotiche e abiotiche, rilevate dall’echosurvey sugli stessi banchi. La validazione del classificatore è stata effettuata sul test set, ossia sui dati che non erano stati scelti per la fase di training. Per ciascuna cala, sono stati infine tracciati dei grafici di dispersione/correlazione dei gruppi ittici e le percentuali simulate. Come misura di corrispondenza dei dati sono stati considerati i valori di regressione R2 tra le percentuali reali e quelle calcolate dal classificatore fuzzy naïve Bayes. Questi, risultando molto alti (0,9134-0,99667), validavano il risultato del classificatore che discriminava con accuratezza le ecotracce provenienti dai banchi. L’applicabilità del classificatore va comunque testata e verificata oltre i limiti imposti da un lavoro di tesi; in particolare la fase di test va riferita a specie diverse, a condizioni ambientali al contorno differenti da quelle riscontrate e all’utilizzo di learning sample meno estesi.
Regulation and structure of YahD, a copper-inducible / serine hydrolase of Lactococcus lactis IL1403
Resumo:
Lactococcus lactis IL1403 is a lactic acid bacterium that is used widely for food fermentation. Copper homeostasis in this organism chiefly involves copper secretion by the CopA copper ATPase. This enzyme is under the control of the CopR transcriptional regulator. CopR not only controls its own expression and that of CopA, but also that of an additional three operons and two monocistronic genes. One of the genes under the control of CopR, yahD, encodes an α/β-hydrolase. YahD expression was induced by copper and cadmium, but not by other metals or oxidative or nitrosative stress. The three-dimensional structure of YahD was determined by X-ray crystallography to a resolution of 1.88 Å. The protein was found to adopt an α/β-hydrolase fold with the characteristic Ser-His-Asp catalytic triad. Functional testing of YahD for a wide range of substrates for esterases, lipases, epoxide hydrolases, phospholipases, amidases and proteases was, however, unsuccessful. A copper-inducible serine hydrolase has not been described previously and YahD appears to be a new functional member of this enzyme family.
Resumo:
Perilipin-1 surrounds lipid droplets in both adipocytes and in atheroma plaque foam cells and controls access of lipases to the lipid core. In hemodialysis (HD) patients, dyslipidemia, malnutrition, inflammation and atherosclerosis are common. Thirty-six HD patients and 28 healthy volunteers were enrolled into the study. Ten HD patients suffered from coronary heart disease (CHD). Perilipin-1, triglycerides, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol (HDL-C), body mass index, albumin, geriatric nutritional risk index, normalized protein catabolic rate, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were measured. Perilipin-1 did not differ between HD patients and healthy volunteers. IL-6 and TNF-α were higher in HD patients. The evaluated nutritional markers and the markers of inflammation did not differ between HD patients with high perilipin-1 levels and HD patients with low perilipin-1 levels. Regarding the lipid profile, only HDL-C differed between HD patients with high perilipin-1 levels and HD patients with low perilipin-1 levels, and it was higher in the first subgroup. Perilipin-1 was significantly higher in HD patients without CHD. Perilipin-1 is detectable in the serum of HD patients and it is associated with increased HDL-C and decreased incidence of CHD.
Resumo:
Sufficient oxygen supply is crucial for the development and physiology of mammalian cells and tissues. When simple diffusion of oxygen becomes inadequate to provide the necessary flow of substrate, evolution has provided cells with tools to detect and respond to hypoxia by upregulating the expression of specific genes, which allows an adaptation to hypoxia-induced stress conditions. The modulation of cell signaling by hypoxia is an emerging area of research that provides insight into the orchestration of cell adaptation to a changing environment. Cell signaling and adaptation processes are often accompanied by rapid and/or chronic remodeling of membrane lipids by activated lipases. This review highlights the bi-directional relation between hypoxia and lipid signaling mechanisms.