997 resultados para STARS: FUNDAMENTAL PARAMETERS
Resumo:
Context. Our understanding of the chemical evolution (CE) of the Galactic bulge requires the determination of abundances in large samples of giant stars and planetary nebulae (PNe). Studies based on high resolution spectroscopy of giant stars in several fields of the Galactic bulge obtained with very large telescopes have allowed important progress. Aims. We discuss PNe abundances in the Galactic bulge and compare these results with those presented in the literature for giant stars. Methods. We present the largest, high-quality data-set available for PNe in the direction of the Galactic bulge (inner-disk/bulge). For comparison purposes, we also consider a sample of PNe in the Large Magellanic Cloud (LMC). We derive the element abundances in a consistent way for all the PNe studied. By comparing the abundances for the bulge, inner-disk, and LMC, we identify elements that have not been modified during the evolution of the PN progenitor and can be used to trace the bulge chemical enrichment history. We then compare the PN abundances with abundances of bulge field giant. Results. At the metallicity of the bulge, we find that the abundances of O and Ne are close to the values for the interstellar medium at the time of the PN progenitor formation, and hence these elements can be used as tracers of the bulge CE, in the same way as S and Ar, which are not expected to be affected by nucleosynthetic processes during the evolution of the PN progenitors. The PN oxygen abundance distribution is shifted to lower values by 0.3 dex with respect to the distribution given by giants. A similar shift appears to occur for Ne and S. We discuss possible reasons for this PNe-giant discrepancy and conclude that this is probably due to systematic errors in the abundance derivations in either giants or PNe (or both). We issue an important warning concerning the use of absolute abundances in CE studies.
Resumo:
It is possible that a system composed of up, down, and strange quarks exists as the true ground state of nuclear matter at high densities and low temperatures. This exotic plasma, called strange quark matter (SQM), seems to be even more favorable energetically if quarks are in a superconducting state, the so-called color-flavor locked state. Here we present calculations made on the basis of the MIT bag model, considering the influence of finite temperature on the allowed parameters characterizing the system for stability of bulk SQM (the so-called stability windows) and also for strangelets, small lumps of SQM, both in the color-flavor locking scenario. We compare these results with the unpaired SQM and also briefly discuss some astrophysical implications of them. Also, the issue of the strangelet's electric charge is discussed. The effects of dynamical screening, though important for nonpaired SQM strangelets, are not relevant when considering pairing among all three flavors and colors of quarks.
Resumo:
We present K-band spectra of the near infrared counterparts to IRS 2E and IRS 2W which is associated with the ultracompact H II region W51d, both of them embedded sources in the Galactic compact H II region W51 IRS 2. The high spatial resolution observations were obtained with the laser guide star facility and Near-infrared Integral Field Spectrograph (NIFS) mounted at the Gemini-North observatory. The spectrum of the ionizing source of W51d shows the photospheric features N III ( 21155 angstrom) in emission and He II ( 21897 angstrom) in absorption which lead us to classify it as a young O3 type star. We detected CO overtone in emission at 23000 angstrom in the spectrum of IRS 2E, suggesting that it is a massive young object still surrounded by an accretion disk, probably transitioning from the hot core phase to an ultracompact H II region.
Resumo:
Aims. We present the analysis of the [alpha/Fe] abundance ratios for a large number of stars at several locations in the Milky Way bulge with the aim of constraining its formation scenario. Methods. We obtained FLAMES-GIRAFFE spectra (R = 22 500) at the ESO Very Large Telescope for 650 bulge red giant branch (RGB) stars and performed spectral synthesis to measure Mg, Ca, Ti, and Si abundances. This sample is composed of 474 giant stars observed in 3 fields along the minor axis of the Galactic bulge and at latitudes b = -4 degrees, b = -6 degrees, b = -12 degrees. Another 176 stars belong to a field containing the globular cluster NGC 6553, located at b = -3 degrees and 5 degrees away from the other three fields along the major axis. Stellar parameters and metallicities for these stars were presented in Zoccali et al. (2008, A&A, 486, 177). We have also re-derived stellar parameters and abundances for the sample of thick and thin disk red giants analyzed in Alves-Brito et al. (2010, A&A, 513, A35). Therefore using a homogeneous abundance database for the bulge, thick and thin disk, we have performed a differential analysis minimizing systematic errors, to compare the formation scenarios of these Galactic components. Results. Our results confirm, with large number statistics, the chemical similarity between the Galactic bulge and thick disk, which are both enhanced in alpha elements when compared to the thin disk. In the same context, we analyze [alpha/Fe] vs. [Fe/H] trends across different bulge regions. The most metal rich stars, showing low [alpha/Fe] ratios at b = -4 degrees disappear at higher Galactic latitudes in agreement with the observed metallicity gradient in the bulge. Metal-poor stars ([Fe/H] < -0.2) show a remarkable homogeneity at different bulge locations. Conclusions. We have obtained further constrains for the formation scenario of the Galactic bulge. A metal-poor component chemically indistinguishable from the thick disk hints for a fast and early formation for both the bulge and the thick disk. Such a component shows no variation, neither in abundances nor kinematics, among different bulge regions. A metal-rich component showing low [alpha/Fe] similar to those of the thin disk disappears at larger latitudes. This allows us to trace a component formed through fast early mergers (classical bulge) and a disk/bar component formed on a more extended timescale.
Resumo:
Context. Precise S abundances are important in the study of the early chemical evolution of the Galaxy. In particular the site of the formation remains uncertain because, at low metallicity, the trend of this alpha-element versus [Fe/H] remains unclear. Moreover, although sulfur is not bound significantly in dust grains in the ISM, it seems to behave differently in DLAs and old metal-poor stars. Aims. We attempt a precise measurement of the S abundance in a sample of extremely metal-poor stars observed with the ESO VLT equipped with UVES, taking into account NLTE and 3D effects. Methods. The NLTE profiles of the lines of multiplet 1 of S I were computed with a version of the program MULTI, including opacity sources from ATLAS9 and based on a new model atom for S. These profiles were fitted to the observed spectra. Results. We find that sulfur in EMP stars behaves like the other alpha-elements, with [S/Fe] remaining approximately constant below [Fe/H] = -3. However, [S/Mg] seems to decrease slightly with increasing [Mg/H]. The overall abundance patterns of O, Na, Mg, Al, S, and K are most closely matched by the SN model yields by Heger & Woosley. The [S/Zn] ratio in EMP stars is solar, as also found in DLAs. We derive an upper limit to the sulfur abundance [S/Fe] < +0.5 for the ultra metal-poor star CS 22949-037. This, along with a previously reported measurement of zinc, argues against the conjecture that the light-element abundance pattern of this star (and by analogy, the hyper iron-poor stars HE 0107-5240 and HE 1327-2326) would be due to dust depletion.
Resumo:
Based on high-resolution (R approximate to 42 000 to 48 000) and high signal-to-noise (S/N approximate to 50 to 150) spectra obtained with UVES/VLT, we present detailed elemental abundances (O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, Y, and Ba) and stellar ages for 12 new microlensed dwarf and subgiant stars in the Galactic bulge. Including previous microlensing events, the sample of homogeneously analysed bulge dwarfs has now grown to 26. The analysis is based on equivalent width measurements and standard 1-D LTE MARCS model stellar atmospheres. We also present NLTE Li abundances based on line synthesis of the (7)Li line at 670.8 nm. The results from the 26 microlensed dwarf and subgiant stars show that the bulge metallicity distribution (MDF) is double-peaked; one peak at [Fe/H] approximate to -0.6 and one at [Fe/H] approximate to +0.3, and with a dearth of stars around solar metallicity. This is in contrast to the MDF derived from red giants in Baade's window, which peaks at this exact value. A simple significance test shows that it is extremely unlikely to have such a gap in the microlensed dwarf star MDF if the dwarf stars are drawn from the giant star MDF. To resolve this issue we discuss several possibilities, but we can not settle on a conclusive solution for the observed differences. We further find that the metal-poor bulge dwarf stars are predominantly old with ages greater than 10 Gyr, while the metal-rich bulge dwarf stars show a wide range of ages. The metal-poor bulge sample is very similar to the Galactic thick disk in terms of average metallicity, elemental abundance trends, and stellar ages. Speculatively, the metal-rich bulge population might be the manifestation of the inner thin disk. If so, the two bulge populations could support the recent findings, based on kinematics, that there are no signatures of a classical bulge and that the Milky Way is a pure-disk galaxy. Also, recent claims of a flat IMF in the bulge based on the MDF of giant stars may have to be revised based on the MDF and abundance trends probed by our microlensed dwarf stars.
Resumo:
Context. The chemical composition of extremely metal-poor stars (EMP stars; [Fe/H] < similar to -3) is a unique tracer of early nucleosynthesis in the Galaxy. As such stars are rare, we wish to find classes of luminous stars which can be studied at high spectral resolution. Aims. We aim to determine the detailed chemical composition of the two EMP stars CS 30317-056 and CS 22881-039, originally thought to be red horizontal-branch (RHB) stars, and compare it to earlier results for EMP stars as well as to nucleosynthesis yields from various supernova (SN) models. In the analysis, we discovered that our targets are in fact the two most metal-poor RR Lyrae stars known. Methods. Our detailed abundance analysis, taking into account the variability of the stars, is based on VLT/UVES spectra (R similar or equal to 43 000) and 1D LTE OSMARCS model atmospheres and synthetic spectra. For comparison with SN models we also estimate NLTE corrections for a number of elements. Results. We derive LTE abundances for the 16 elements O, Na, Mg, Al, Si, S, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni, Sr and Ba, in good agreement with earlier values for EMP dwarf, giant and RHB stars. Li and C are not detected in either star. NLTE abundance corrections are newly calculated for O and Mg and taken from the literature for other elements. The resulting abundance pattern is best matched by model yields for supernova explosions with high energy and/or significant asphericity effects. Conclusions. Our results indicate that, except for Li and C, the surface composition of EMP RR Lyr stars is not significantly affected by mass loss, mixing or diffusion processes; hence, EMP RR Lyr stars should also be useful tracers of the chemical evolution of the early Galactic halo. The observed abundance ratios indicate that these stars were born from an ISM polluted by energetic, massive (25-40 M(circle dot)) and/or aspherical supernovae, but the NLTE corrections for Sc and certain other elements do play a role in the choice of model.
Resumo:
Context. It is not known how many globular clusters may remain undetected towards the Galactic bulge. Aims. One of the aims of the VISTA Variables in the Via Lactea (VVV) Survey is to accurately measure the physical parameters of the known globular clusters in the inner regions of the Milky Way and search for new ones, hidden in regions of large extinction. Methods. From deep near-infrared images, we derive deep JHK(S)-band photometry of a region surrounding the known globular cluster UKS 1 and reveal a new low-mass globular cluster candidate that we name VVV CL001. Results. We use the horizontal-branch red clump to measure E(B-V) similar to 2.2 mag, (m - M)(0) = 16.01 mag, and D = 15.9 kpc for the globular cluster UKS 1. On the basis of near-infrared colour-magnitude diagrams, we also find that VVV CL001 has E(B-V) similar to 2.0, and that it is at least as metal-poor as UKS 1, although its distance remains uncertain. Conclusions. Our finding confirms the previous projection that the central region of the Milky Way harbours more globular clusters. VVV CL001 and UKS 1 are good candidates for a physical cluster binary, but follow-up observations are needed to decide if they are located at the same distance and have similar radial velocities.
Resumo:
We report on oxygen abundances determined from medium-resolution near-infrared spectroscopy for a sample of 57 carbon-enhanced metal-poor (CEMP) stars selected from the Hamburg/ESO Survey. The majority of our program stars exhibit oxygen-to-iron ratios in the range +0.5 < [O/Fe]< + 2.0. The [O/Fe] values for this sample are statistically compared to available high-resolution estimates for known CEMP stars as well as to high-resolution estimates for a set of carbon-normal metal-poor stars. Carbon, nitrogen, and oxygen abundance patterns for a sub-sample of these stars are compared to yield predictions for very metal-poor asymptotic giant branch (AGB) abundances in the recent literature. We find that the majority of our sample exhibit patterns that are consistent with previously studied CEMP stars having s-process-element enhancements and thus have very likely been polluted by carbon- and oxygen-enhanced material transferred from a metal-poor AGB companion.
Resumo:
Aims. This work investigates the properties (metallicity and kinematics) and interfaces of the Galactic thick disc as a function of height above the Galactic plane. The main aim is to study the thick disc in a place where it is the main component of the sample. Methods. We take advantage of former astrometric work in two fields of several square degrees in which accurate proper motions were measured down to V-magnitudes of 18.5 in two directions, one near the north galactic pole and the other at a galactic latitude of 46 degrees and galactic longitude near 0 degrees. Spectroscopic observations have been acquired in these two fields for a total of about 400 stars down to magnitude 18.0, at spectral resolutions of 3.5 to 6.25 angstrom. The spectra have been analysed with the code ETOILE, comparing the target stellar spectra with a grid of 1400 reference stellar spectra. This comparison allowed us to derive the parameters effective temperature, gravity, [Fe/H] and absolute magnitude for each target star. Results. The Metallicity Distribution Function (MDF) of the thin-thick-disc-halo system is derived for several height intervals between 0 and 5 kpc above the Galactic plane. The MDFs show a decrease of the ratio of the thin to thick disc stars between the first and second kilo-parsec. This is consistent with the classical modelling of the vertical density profile of the disc with 2 populations with different scale heights. A vertical metallicity gradient, partial derivative[Fe/H]/partial derivative z = -0.068 +/- 0.009 dex kpc(-1), is observed in the thick disc. It is discussed in terms of scenarios of formation of the thick disc.
Resumo:
Context. The formation of ultra-compact dwarf galaxies (UCDs) is believed to be driven by interaction, and UCDs are abundant in the cores of galaxy clusters, environments that mark the end-point of galaxy evolution. Nothing is known about the properties of UCDs in compact groups of galaxies, environments where most of galaxy evolution and interaction is believed to occur and where UCDs in an intermediate stage in their evolution may be expected. Aims. The main goal of this study is to detect and characterize, for the first time, the UCD population of compact groups of galaxies. For that, two nearby groups in different evolutionary stages, HCG22 and HCG90, were targeted. Methods. We selected about 40 UCD candidates from pre-existing photometry of both groups, and obtained spectra of these candidates using the VLT FORS2 instrument in MXU mode. Archival HST/ACS imaging was used to measure their structural parameters. Results. We detect 16 and 5 objects belonging to HCG22 and HCG90, respectively, covering the magnitude range -10.0 > M(R) > -11.5 mag. Their integrated colours are consistent with old ages covering a broad range in metallicities (metallicities confirmed by the spectroscopic measurements). Photometric mass estimates put 4 objects in HCG90 and 9 in HCG22 in the mass range of UCDs (> 2 x 10(6) M(circle dot)) for an assumed age of 12Gyr. These UCDs are on average 2-3 times larger than the typical size of Galactic GCs, covering a range of 2 less than or similar to r(h) less than or similar to 21 pc. The UCDs in HCG22 are more concentrated around the central galaxy than in HCG90, at the 99% confidence level. They cover a broad range in [alpha/Fe] abundances from sub-to super-solar. The spectra of 3 UCDs (2 in HCG22, 1 in HCG90) show tentative evidence of intermediate age stellar populations. The clearest example is the largest and most massive UCD (similar to 10(7) M(circle dot)) in our sample, which is detected in HCG22. Its properties are most consistent with a stripped dwarf galaxy nucleus. We calculate the specific frequency (S(N)) of UCDs for both groups, finding that HCG22 has about three times higher S(N) than HCG90. Conclusions. The ensemble properties of the detected UCDs supports two co-existing formation channels: a star cluster origin (low-luminosity, compact sizes, old ages, super-solar alpha/Fe), and an origin as tidally stripped dwarf nuclei (more extended and younger stellar populations). Our results imply that the UCDs detected in both groups do not, in their majority, originate from relatively recent galaxy interactions. Most of the detected UCDs have likely been brought into the group along with their host galaxies.
Resumo:
The CoRoT exoplanet science team announces the discovery of CoRoT-11b, a fairly massive hot-Jupiter transiting a V = 12.9 mag F6 dwarf star (M(*) = 1.27 +/- 0.05 M(circle dot), R(*) = 1.37 +/- 0.03 R(circle dot), T(eff) = 6440 +/- 120 K), with an orbital period of P = 2.994329 +/- 0.000011 days and semi-major axis a = 0.0436 +/- 0.005 AU. The detection of part of the radial velocity anomaly caused by the Rossiter-McLaughlin effect shows that the transit-like events detected by CoRoT are caused by a planet-sized transiting object in a prograde orbit. The relatively high projected rotational velocity of the star (upsilon sin i(star) = 40 +/- 5 km s(-1)) places CoRoT-11 among the most rapidly rotating planet host stars discovered so far. With a planetary mass of M(p) = 2.33 +/- 0.34 M(Jup) and radius R(p) = 1.43 +/- 0.03 R(Jup), the resulting mean density of CoRoT-11b (rho(p) = 0.99 +/- 0.15 g/cm(3)) can be explained with a model for an inflated hydrogen-planet with a solar composition and a high level of energy dissipation in its interior.
Resumo:
We announce the discovery of the transiting planet CoRoT-13b. Ground-based follow-up in CFHT and IAC80 confirmed CoRoT's observations. The mass of the planet was measured with the HARPS spectrograph and the properties of the host star were obtained analyzing HIRES spectra from the Keck telescope. It is a hot Jupiter-like planet with an orbital period of 4.04 days, 1.3 Jupiter masses, 0.9 Jupiter radii, and a density of 2.34 g cm(-3). It orbits a G0V star with T(eff) = 5 945 K, M(*) = 1.09 M(circle dot), R(*) = 1.01 R(circle dot), solar metallicity, a lithium content of +1.45 dex, and an estimated age of between 0.12 and 3.15 Gyr. The lithium abundance of the star is consistent with its effective temperature, activity level, and age range derived from the stellar analysis. The density of the planet is extreme for its mass, implies that heavy elements are present with a mass of between about 140 and 300 M(circle plus).
Resumo:
Context. Classical Be stars are rapid rotators of spectral type late O to early A and luminosity class V-III, which exhibit Balmer emission lines and often a near infrared excess originating in an equatorially concentrated circumstellar envelope, both produced by sporadic mass ejection episodes. The causes of the abnormal mass loss (the so-called Be phenomenon) are as yet unknown. Aims. For the first time, we can now study in detail Be stars outside the Earth's atmosphere with sufficient temporal resolution. We investigate the variability of the Be Star CoRoT-ID 102761769 observed with the CoRoT satellite in the exoplanet field during the initial run. Methods. One low-resolution spectrum of the star was obtained with the INT telescope at the Observatorio del Roque de los Muchachos. A time series analysis was performed using both cleanest and singular spectrum analysis algorithms to the CoRoT light curve. To identify the pulsation modes of the observed frequencies, we computed a set of models representative of CoRoT-ID 102761769 by varying its main physical parameters inside the uncertainties discussed. Results. We found two close frequencies related to the star. They are 2.465 c d(-1) (28.5 mu Hz) and 2.441 c d(-1) (28.2 mu Hz). The precision to which those frequencies were found is 0.018 c d(-1) (0.2 mu Hz). The projected stellar rotation was estimated to be 120 km s(-1) from the Fourier transform of spectral lines. If CoRoT-ID 102761769 is a typical Galactic Be star it rotates near the critical velocity. The critical rotation frequency of a typical B5-6 star is about 3.5 c d(-1) (40.5 mu Hz), which implies that the above frequencies are really caused by stellar pulsations rather than star's rotation.
Resumo:
Context. To study the evolution of Li in the Galaxy it is necessary to observe dwarf or subgiant stars. These are the only long-lived stars whose present-day atmospheric chemical composition reflects their natal Li abundances according to standard models of stellar evolution. Although Li has been extensively studied in the Galactic disk and halo, to date there has only been one uncertain detection of Li in an unevolved bulge star. Aims. Our aim with this study is to provide the first clear detection of Li in the Galactic bulge, based on an analysis of a dwarf star that has largely retained its initial Li abundance. Methods. We performed a detailed elemental abundance analysis of the bulge dwarf star MOA-2010-BLG-285S using a high-resolution and high signal-to-noise spectrum obtained with the UVES spectrograph at the VLT when the object was optically magnified during a gravitational microlensing event (visual magnification A similar to 550 during observation). The Li abundance was determined through synthetic line profile fitting of the (7)Li resonance doublet line at 670.8 nm. The results have been corrected for departures from LTE. Results. MOA-2010-BLG-285S is, at [Fe/H] = -1.23, the most metal-poor dwarf star detected so far in the Galactic bulge. Its old age (12.5 Gyr) and enhanced [alpha/Fe] ratios agree well with stars in the thick disk at similar metallicities. This star represents the first unambiguous detection of Li in a metal-poor dwarf star in the Galactic bulge. We find an NLTE corrected Li abundance of log epsilon(Li) = 2.16, which is consistent with values derived for Galactic disk and halo dwarf stars at similar metallicities and temperatures. Conclusions. Our results show that there are no signs of Li enrichment or production in the Galactic bulge during its earliest phases. Observations of Li in other galaxies (omega Cen) and other components of the Galaxy suggest further that the Spite plateau is universal.