984 resultados para STAR-FORMATION RATE
Resumo:
The Herschel Lensing Survey (HLS) takes advantage of gravitational lensing by massive galaxy clusters to sample a population of high-redshift galaxies which are too faint to be detected above the confusion limit of current far-infrared/submillimeter telescopes. Measurements from 100-500 μm bracket the peaks of the far-infrared spectral energy distributions of these galaxies, characterizing their infrared luminosities and star formation rates. We introduce initial results from our science demonstration phase observations, directed toward the Bullet cluster (1E0657-56). By combining our observations with LABOCA 870 μm and AzTEC 1.1 mm data we fully constrain the spectral energy distributions of 19 MIPS 24 μm-selected galaxies which are located behind the cluster. We find that their colors are best fit using templates based on local galaxies with systematically lower infrared luminosities. This suggests that our sources are not like local ultra-luminous infrared galaxies in which vigorous star formation is contained in a compact highly dust-obscured region. Instead, they appear to be scaled up versions of lower luminosity local galaxies with star formation occurring on larger physical scales.
Resumo:
We present results from the Spitzer Infrared Spectrograph spectral mapping observations of 15 local luminous infrared galaxies (LIRGs). In this paper, we investigate the spatial variations of the mid-IR emission which includes fine structure lines, molecular hydrogen lines, polycyclic aromatic features (PAHs), continuum emission, and the 9.7 μm silicate feature. We also compare the nuclear and integrated spectra. We find that the star formation takes place in extended regions (several kpc) as probed by the PAH emission, as well as the [Ne II]12.81 μm and [Ne III]15.56 μm emissions. The behavior of the integrated PAH emission and 9.7 μm silicate feature is similar to that of local starburst galaxies. We also find that the minima of the [Ne III]15.56 μm/[Ne II]12.81 μm ratio tends to be located at the nuclei and its value is lower than that of H II regions in our LIRGs and nearby galaxies. It is likely that increased densities in the nuclei of LIRGs are responsible for the smaller nuclear [Ne III]15.56 μm/[Ne II]12.81 μm ratios. This includes the possibility that some of the most massive stars in the nuclei are still embedded in ultracompact H II regions. In a large fraction of our sample, the 11.3 μm PAH emission appears more extended than the dust 5.5 μm continuum emission. We find a dependency of the 11.3 μm PAH/7.7 μm PAH and [Ne II]12.81 μm/11.3 μm PAH ratios with the age of the stellar populations. Smaller and larger ratios, respectively, indicate recent star formation. The estimated warm (300 K
Resumo:
Infrared selection is a potentially powerful way to identify heavily obscured AGNs missed in even the deepest X-ray surveys. Using a 24 μm-selected sample in GOODS-S, we test the reliability and completeness of three infrared AGN selection methods: (1) IRAC color-color selection, (2) IRAC power-law selection, and (3) IR-excess selection; we also evaluate a number of IR-excess approaches. We find that the vast majority of non-power-law IRAC color-selected AGN candidates in GOODS-S have colors consistent with those of star-forming galaxies. Contamination by star-forming galaxies is most prevalent at low 24 μm flux densities (~100 μJy) and high redshifts (z ~ 2), but the fraction of potential contaminants is still high (~50%) at 500 μJy, the highest flux density probed reliably by our survey. AGN candidates selected via a simple, physically motivated power-law criterion ("power-law galaxies," or PLGs), however, appear to be reliable. We confirm that the IR-excess methods successfully identify a number of AGNs, but we also find that such samples may be significantly contaminated by star-forming galaxies. Adding only the secure Spitzer-selected PLG, color-selected, IR-excess, and radio/IR-selected AGN candidates to the deepest X-ray-selected AGN samples directly increases the number of known X-ray AGNs (84) by 54%-77%, and implies an increase to the number of 24 μm-detected AGNs of 71%-94%. Finally, we show that the fraction of MIR sources dominated by an AGN decreases with decreasing MIR flux density, but only down to f_24 μ m = 300 μJy. Below this limit, the AGN fraction levels out, indicating that a nonnegligible fraction (~10%) of faint 24 μm sources (the majority of which are missed in the X-ray) are powered not by star formation, but by the central engine. The fraction of all AGNs (regardless of their MIR properties) exceeds 15% at all 24 μm flux densities.
Resumo:
We study the stellar and star formation properties of the host galaxies of 58 X-ray-selected AGNs in the GOODS portion of the Chandra Deep Field South (CDF-S) region at z ~ 0.5-1.4. The AGNs are selected such that their rest-frame UV to near-infrared spectral energy distributions (SEDs) are dominated by stellar emission; i.e., they show a prominent 1.6 μm bump, thus minimizing the AGN emission "contamination." This AGN population comprises approximately 50% of the X-ray-selected AGNs at these redshifts. We find that AGNs reside in the most massive galaxies at the redshifts probed here. Their characteristic stellar masses (M_* ~ 7.8 × 10^10 and M_* ~ 1.2 × 10^11 M_☉ at median redshifts of 0.67 and 1.07, respectively) appear to be representative of the X-ray-selected AGN population at these redshifts and are intermediate between those of local type 2 AGNs and high-redshift (z ~ 2) AGNs. The inferred black hole masses (M_BH ~ 2 × 10^8 M_☉) of typical AGNs are similar to those of optically identified quasars at similar redshifts. Since the AGNs in our sample are much less luminous (L_2–10 keV < 10^44 erg s^−1) than quasars, typical AGNs have low Eddington ratios (η ~ 0.01-0.001). This suggests that, at least at intermediate redshifts, the cosmic AGN "downsizing" is due to both a decrease in the characteristic stellar mass of typical host galaxies and less efficient accretion. Finally, there is no strong evidence in AGN host galaxies for either highly suppressed star formation (expected if AGNs played a role in quenching star formation) or elevated star formation when compared to mass-selected (i.e., IRAC-selected) galaxies of similar stellar masses and redshifts.
Resumo:
We present a complete census of all Herschel-detected sources within the six massive lensing clusters of the HST Frontier Fields (HFF). We provide a robust legacy catalogue of 263 sources with Herschel fluxes, primarily based on imaging from the Herschel Lensing Survey and PEP/HerMES Key Programmes. We optimally combine Herschel, Spitzer and WISE infrared (IR) photometry with data from HST, VLA and ground-based observatories, identifying counterparts to gain source redshifts. For each Herschel-detected source we also present magnification factor (mu), intrinsic IR luminosity and characteristic dust temperature, providing a comprehensive view of dust-obscured star formation within the HFF. We demonstrate the utility of our catalogues through an exploratory overview of the magnified population, including more than 20 background sub-LIRGs unreachable by Herschel without the assistance gravitational lensing.
(Table 3.1.10) Rates of biogeochemical processes in bottom sediments of the White Sea in August 2006
Resumo:
Recent studies have suggested that the marine contribution of methane from shallow regions and melting marine terminating glaciers may have been underestimated. Here we report on methane sources and potential sinks associated with methane seeps in Cumberland Bay, South Georgia's largest fjord system. The average organic carbon content in the upper 8 meters of the sediment is around 0.65 wt.%; this observation combined with Parasound data suggest that the methane gas accumulations probably originate from peat-bearing sediments currently located several tens of meters below the seafloor. Only one of our cores indicates upward advection; instead most of the methane is transported via diffusion. Sulfate and methane flux estimates indicate that a large fraction of methane is consumed by anaerobic oxidation of methane (AOM). Carbon cycling at the sulfate-methane transition (SMT) results in a marked fractionation of the d13C-CH4 from an estimated source value of -65 per mil to a value as low as -96 per mil just below the SMT. Methane concentrations in sediments are high, especially close to the seepage sites (~40 mM); however, concentrations in the water column are relatively low (max. 58 nM) and can be observed only close to the seafloor. Methane is trapped in the lowermost water mass, however, measured microbial oxidation rates reveal very low activity with an average turnover of 3.1 years. We therefore infer that methane must be transported out of the bay in the bottom water layer. A mean sea-air flux of only 0.005 nM/m²/s confirms that almost no methane reaches the atmosphere.
Resumo:
Study of biogeochemical processes in waters and sediments of the Chukchi Sea in August 2004 revealed atypical maxima of biogenic element (N, P, and Si) concentrations and rate of microbial sulfate reduction in the surface layer (0-3 cm) of marine sediments. The C/N/P ratio in organic matter (OM) of this layer does not fit the Redfield-Richards stoichiometric model. Specific features of biogeochemical processes in the sea are likely related to the complex dynamics of water, high primary produc¬tivity (110-1400 mg C/m**2/day), low depth of the basin (<50 m for 60% of the water area), reduced food chain due to low population of zooplankton, high density of zoobenthos (up to 4230 g/m**2), and high activity of microbial processes. Drastic decrease in concentrations of biogenic elements, iodine, total alkalinity, and population of microorganisms beneath the 0-3 cm layer testify to large-scale OM decay at the water-seafloor barrier. Our original experimental data support high annual rate of OM mineralization at the bottom of the Chukchi Sea.
Resumo:
We present an extensive photometric catalog for 548 CALIFA galaxies observed as of the summer of 2015. CALIFA is currently lacking photometry matching the scale and diversity of its spectroscopy; this work is intended to meet all photometric needs for CALIFA galaxies while also identifying best photometric practices for upcoming integral field spectroscopy surveys such as SAMI and MaNGA. This catalog comprises gri surface brightness profiles derived from Sloan Digital Sky Survey (SDSS) imaging, a variety of non-parametric quantities extracted from these pro files, and parametric models fitted to the i-band pro files (1D) and original galaxy images (2D). To compliment our photometric analysis, we contrast the relative performance of our 1D and 2D modelling approaches. The ability of each measurement to characterize the global properties of galaxies is quantitatively assessed, in the context of constructing the tightest scaling relations. Where possible, we compare our photometry with existing photometrically or spectroscopically obtained measurements from the literature. Close agreement is found with Walcher et al. (2014), the current source of basic photometry and classifications of CALIFA galaxies, while comparisons with spectroscopically derived quantities reveals the effect of CALIFA's limited field of view compared to broadband imaging surveys such as the SDSS. The colour-magnitude diagram, star formation main sequence, and Tully-Fisher relation of CALIFA galaxies are studied, to give a small example of the investigations possible with this rich catalog. We conclude with a discussion of points of concern for ongoing integral field spectroscopy surveys and directions for future expansion and exploitation of this work.
Resumo:
Aims. Projected rotational velocities (ve sin i) have been estimated for 334 targets in the VLT-FLAMES Tarantula Survey that do not manifest significant radial velocity variations and are not supergiants. They have spectral types from approximately O9.5 to B3. The estimates have been analysed to infer the underlying rotational velocity distribution, which is critical for understanding the evolution of massive stars. Methods. Projected rotational velocities were deduced from the Fourier transforms of spectral lines, with upper limits also being obtained from profile fitting. For the narrower lined stars, metal and non-diffuse helium lines were adopted, and for the broader lined stars, both non-diffuse and diffuse helium lines; the estimates obtained using the different sets of lines are in good agreement. The uncertainty in the mean estimates is typically 4% for most targets. The iterative deconvolution procedure of Lucy has been used to deduce the probability density distribution of the rotational velocities. Results. Projected rotational velocities range up to approximately 450 kms-1 and show a bi-modal structure. This is also present in the inferred rotational velocity distribution with 25% of the sample having 0 <ve <100 km s-1 and the high velocity component having ve ∼ 250 km s-1. There is no evidence from the spatial and radial velocity distributions of the two components that they represent either field and cluster populations or different episodes of star formation. Be-type stars have also been identified. Conclusions. The bi-modal rotational velocity distribution in our sample resembles that found for late-B and early-A type stars.While magnetic braking appears to be a possible mechanism for producing the low-velocity component, we can not rule out alternative explanations. © ESO 2013.
Resumo:
We present a new approach to understand the landscape of supernova explosion energies, ejected nickel masses, and neutron star birth masses. In contrast to other recent parametric approaches, our model predicts the properties of neutrino-driven explosions based on the pre-collapse stellar structure without the need for hydrodynamic simulations. The model is based on physically motivated scaling laws and simple differential equations describing the shock propagation, the contraction of the neutron star, the neutrino emission, the heating conditions, and the explosion energetics. Using model parameters compatible with multi-D simulations and a fine grid of thousands of supernova progenitors, we obtain a variegated landscape of neutron star and black hole formation similar to other parametrized approaches and find good agreement with semi-empirical measures for the ‘explodability’ of massive stars. Our predicted explosion properties largely conform to observed correlations between the nickel mass and explosion energy. Accounting for the coexistence of outflows and downflows during the explosion phase, we naturally obtain a positive correlation between explosion energy and ejecta mass. These correlations are relatively robust against parameter variations, but our results suggest that there is considerable leeway in parametric models to widen or narrow the mass ranges for black hole and neutron star formation and to scale explosion energies up or down. Our model is currently limited to an all-or-nothing treatment of fallback and there remain some minor discrepancies between model predictions and observational constraints.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
La galaxie spirale barrée NGC 5430 est particulière en ce sens qu’elle présente un noeud Wolf-Rayet très lumineux et des bras asymétriques. Des spectres longue-fente le long de la barre et dans le bras déformé ainsi que des données SpIOMM couvrant l’ensemble de la galaxie ont été analysées. L’absorption stellaire sous-jacente a été soustraite des spectres longue-fente à l’aide d’un ajustement de modèles théoriques de populations stellaires fait avec le programme GANDALF. L’absorption a un impact très important sur le calcul de l’extinction ainsi que sur les différents diagnostics propres aux régions HII et aux populations stellaires jeunes. Enfin, cette étude montre que NGC 5430 comporte une composante gazeuse ionisée diffuse sur toute son étendue et qu’il est important d’en tenir compte afin d’appliquer correctement les diagnostics. Un des scénarios évolutifs proposés au terme de cette étude est que le noeud Wolf-Rayet constitue le restant d’une petite galaxie ou d’un nuage intergalactique qui serait entré en collision avec NGC 5430. Une structure englobant le noeud Wolf-Rayet se déplace à une vitesse considérablement inférieure (50 - 70 km s-1) à celle attendue à une telle distance du centre de la galaxie (200 - 220 km s-1). De plus, le noeud Wolf-Rayet semble très massif puisque l’intensité maximale du continu stellaire de cette région est semblable à celle du noyau et est de loin supérieure à celle de l’autre côté de la barre. Le nombre d’étoiles Wolf-Rayet (2150) est aussi considérable. Il n’est toutefois pas exclu que la différence de vitesses observée témoigne d’un écoulement de gaz le long de la barre, qui alimenterait la formation stellaire du noeud Wolf-Rayet ou du noyau.
Resumo:
This thesis presents an analysis of the largest catalog to date of infrared spectra of massive young stellar objects in the Large Magellanic Cloud. Evidenced by their very different spectral features, the luminous objects span a range of evolutionary states from those most embedded in their natal molecular material to those that have dissipated and ionized their surroundings to form compact HII regions and photodissociation regions. We quantify the contributions of the various spectral features using the statistical method of principal component analysis. Using this analysis, we classify the YSO spectra into several distinct groups based upon their dominant spectral features: silicate absorption (S Group), silicate absorption and fine-structure line emission (SE), polycyclic aromatic hydrocarbon (PAH) emission (P Group), PAH and fine-structure line emission (PE), and only fine-structure line emission (E). Based upon the relative numbers of sources in each category, we are able to estimate the amount of time massive YSOs spend in each evolutionary stage. We find that approximately 50% of the sources have ionic fine-structure lines, indicating that a compact HII region forms about half-way through the YSO lifetime probed in our study. Of the 277 YSOs we collected spectra for, 41 have ice absorption features, indicating they are surrounded by cold ice-bearing dust particles. We have decomposed the shape of the ice features to probe the composition and thermal history of the ice. We find that most the CO2 ice is embedded a polar ice matrix that has been thermally processed by the embedded YSO. The amount of thermal processing may be correlated with the luminosity of the YSO. Using the Australia Telescope Compact Array, we imaged the dense gas around a subsample of our sources in the HII complexes N44, N105, N113, and N159 using HCO+ and HCN as dense gas tracers. We find that the molecular material in star forming environments is highly clumpy, with clumps that range from subparsec to ~2 parsecs in size and with masses between 10^2 to 10^4 solar masses. We find that there are varying levels of star formation in the clumps, with the lower-mass clumps tending to be without massive YSOs. These YSO-less clumps could either represent an earlier stage of clump to the more massive YSO-bearing ones or clumps that will never form a massive star. Clumps with massive YSOs at their centers have masses larger than those with massive YSOs at their edges, and we suggest that the difference is evolutionary: edge YSO clumps are more advanced than those with YSOs at their centers. Clumps with YSOs at their edges may have had a significant fraction of their mass disrupted or destroyed by the forming massive star. We find that the strength of the silicate absorption seen in YSO IR spectra feature is well-correlated with the on-source HCO+ and HCN flux densities, such that the strength of the feature is indicative of the embeddedness of the YSO. We estimate that ~40% of the entire spectral sample has strong silicate absorption features, implying that the YSOs are embedded in circumstellar material for about 40% of the time probed in our study.