978 resultados para SPRING
Resumo:
The period, known to UK farmers and processors as the "spring flush", when the cows' diet changes from dry feed to spring pasture, has long been established as a time of change in milk properties and processing characteristics. Although it is believed to be a time when problems in processing are most likely to occur (e.g. milk that does not form clots or forms weak gels during cheesemaking), there is little evidence in the literature of detailed changes in milk composition and their impact on product manufacture. In this study, a range of physicochemical properties were analysed in milk collected from five commercial dairy herds before, during and after the spring flush period of 2006. In particular, total and ionic calcium contents of milk were studied in relation to other parameters including rennet clotting, acid gel properties, heat coagulation, alcohol stability, micelle size and zeta potential. Total divalent cations were significantly reduced from 35.4 to 33.4 mmol.L-1 during the study, while ionic calcium was reduced from 1.48 to 1.40 mmol.L-1 over the same period. Many parameters varied significantly between the sample dates. However, there was no evidence to suggest that any of the milk samples would have been unsuitable for processing - e.g. there were no samples that did not form clots with chymosin within a reasonable time or formed especially weak rennet or acid gels. A number of statistically significant correlations were found within the data, including ionic calcium concentration and pH; rennet clotting time (RCT) and micelle diameter; and RCT and ethanol stability. Overall, while there were clear variations in milk composition and properties over this period, there was no evidence to support the view that serious processing problems are likely during the change from dry feed to spring pasture.
Resumo:
This paper presents the design evolution process of a composite leaf spring for freight rail applications. Three designs of eye-end attachment for composite leaf springs are described. The material used is glass fibre reinforced polyester. Static testing and finite element analysis have been carried out to obtain the characteristics of the spring. Load-deflection curves and strain measurement as a function of load for the three designs tested have been plotted for comparison with FEA predicted values. The main concern associated with the first design is the delamination failure at the interface of the fibres that have passed around the eye and the spring body, even though the design can withstand 150 kN static proof load and one million cycles fatigue load. FEA results confirmed that there is a high interlaminar shear stress concentration in that region. The second design feature is an additional transverse bandage around the region prone to delamination. Delamination was contained but not completely prevented. The third design overcomes the problem by ending the fibres at the end of the eye section.
Resumo:
This paper shows the process of the virtual production development of the mechanical connection between the top leaf of a dual composite leaf spring system to a shackle using finite element methods. The commercial FEA package MSC/MARC has been used for the analysis. In the original design the joint was based on a closed eye-end. Full scale testing results showed that this configuration achieved the vertical proof load of 150 kN and 1 million cycles of fatigue load. However, a problem with delamination occurred at the interface between the fibres going around the eye and the main leaf body. To overcome this problem, a second design was tried using transverse bandages of woven glass fibre reinforced tape to wrap the section that is prone to delaminate. In this case, the maximum interlaminar shear stress was reduced by a certain amount but it was still higher than the material’s shear strength. Based on the fact that, even with delamination, the top leaf spring still sustained the maximum static and fatigue loads required, the third design was proposed with an open eye-end, eliminating altogether the interface where the maximum shear stress occurs. The maximum shear stress predicted by FEA is reduced significantly and a safety factor of around 2 has been obtained. Thus, a successful and safe design has been achieved.
Resumo:
The motion of a spring, initially hanging in equilibrium from a fixed point with a mass attached to it, when it is detached from the fixed point, is considered.
Resumo:
We present a descriptive overview of the meteorology in the south eastern subtropical Pacific (SEP) during the VOCALS-REx intensive observations campaign which was carried out between October and November 2008. Mainly based on data from operational analyses, forecasts, reanalysis, and satellite observations, we focus on spatio-temporal scales from synoptic to planetary. A climatological context is given within which the specific conditions observed during the campaign are placed, with particular reference to the relationships between the large-scale and the regional circulations. The mean circulations associated with the diurnal breeze systems are also discussed. We then provide a summary of the day-to-day synoptic-scale circulation, air-parcel trajectories, and cloud cover in the SEP during VOCALS-REx. Three meteorologically distinct periods of time are identified and the large-scale causes for their different character are discussed. The first period was characterised by significant variability associated with synoptic-scale systems interesting the SEP; while the two subsequent phases were affected by planetary-scale disturbances with a slower evolution. The changes between initial and later periods can be partly explained from the regular march of the annual cycle, but contributions from subseasonal variability and its teleconnections were important. Across the whole of the two months under consideration we find a significant correlation between the depth of the inversion-capped marine boundary layer (MBL) and the amount of low cloud in the area of study. We discuss this correlation and argue that at least as a crude approximation a typical scaling may be applied relating MBL and cloud properties with the large-scale parameters of SSTs and tropospheric temperatures. These results are consistent with previously found empirical relationships involving lower-tropospheric stability.