861 resultados para SOLAR ABUNDANCE
Resumo:
We have performed a detailed study of the zenith angle dependence of the regeneration factor and distributions of events at SNO and SK for different solutions of the solar neutrino problem. In particular, we discuss the oscillatory behavior and the synchronization effect in the distribution for the LMA solution, the parametric peak for the LOW solution, etc. A physical interpretation of the effects is given. We suggest a new binning of events which emphasizes the distinctive features of the zenith angle distributions for the different solutions. We also find the correlations between the integrated day-night asymmetry and the rates of events in different zenith angle bins. The study of these correlations strengthens the identification power of the analysis.
Resumo:
An analytical model of an amorphous silicon p-i-n solar cell is presented to describe its photovoltaic behavior under short-circuit conditions. It has been developed from the analysis of numerical simulation results. These results reproduce the experimental illumination dependence of short-circuit resistance, which is the reciprocal slope of the I(V) curve at the short-circuit point. The recombination rate profiles show that recombination in the regions of charged defects near the p-i and i-n interfaces should not be overlooked. Based on the interpretation of the numerical solutions, we deduce analytical expressions for the recombination current and short-circuit resistance. These expressions are given as a function of an effective ¿¿ product, which depends on the intensity of illumination. We also study the effect of surface recombination with simple expressions that describe its influence on current loss and short-circuit resistance.
Resumo:
Natural processes that determine soil and plant litter properties are controlled by multiple factors. However, little attention has been given to distinguishing the effects of environmental factors from the effects of spatial structure of the area on the distribution of soil and litter properties in tropical ecosystems covering heterogeneous topographies. The aim of this study was to assess patterns of soil and litter variation in a tropical area that intercepts different levels of solar radiation throughout the year since its topography has slopes predominantly facing opposing geographic directions. Soil data (pH, C, N, P, H+Al, Ca, Mg, K, Al, Na, sand, and silt) and plant litter data (N, K, Ca, P, and Mg) were gathered together with the geographic coordinates (to model the spatial structure) of 40 sampling units established at two sites composed of slopes predominantly facing northwest and southeast (20 units each). Soil and litter chemical properties varied more among slopes within similar geographic orientations than between the slopes facing opposing directions. Both the incident solar radiation and the spatial structure of the area were relevant in explaining the patterns detected in variation of soil and plant litter. Individual contributions of incident solar radiation to explain the variation in the properties evaluated suggested that this and other environmental factors may play a particularly relevant role in determining soil and plant litter distribution in tropical areas with heterogeneous topography. Furthermore, this study corroborates that the spatial structure of the area also plays an important role in the distribution of soil and litter within this type of landscape, which appears to be consistent with the action of water movement mechanisms in such areas.
Resumo:
Currently, many drivers experience some difficulty in viewing the road ahead of them during times of reduced visibility, such as rain, snow, fog, or the darkness of night- Recent studies done by the National Safety Council provide a detailed contrast between fatal accidents occurring during the day and night. Revealed was that the motor vehicle night death rate (4.41 deaths per 100 million miles driven) was sharply higher than the corresponding death rate during daylight hours (1.21). By providing a delineating system powered by the natural resource of solar power, a constant source of visibility may be maintained throughout the evening. Along with providing enough light to trace the outline of the road, other major goals defined in producing this delineator system are as follows: 1. A strong and durable design that would protect the internal components and survive extreme weather conditions. 2. A low maintenance system where components need few repairs or replacements. 3. A design which makes all components accessible in the event that maintenance is needed, but also prevents vandalism. 4. A design that provides greater visibility to drivers and will not harm a vehicle or its passengers in the event of a collision. This solar powered highway delineator consists of an adjustable solar array, a light fixture, and a standard delineator pole. The solar array houses and protects the solar panels, and can be easily adjusted to obtain a maximum amount of sunlight. The light fixture primarily houses the battery, the circuit and the light assembly. Both components allow for easy accessibility and reduce vandalism using internal connections for bolts and wires. The delineator mounting pole is designed to extensively deform in the event of a collision, therefore reducing any harm caused to the vehicle and/or the passengers. The cost of a single prototype to be produced is approximately $70.00 excluding labor costs. However, these material and labor costs will be greatly reduced if a large number of delineators are produced. It is recommended that the Iowa Department of Transportation take full advantage of the research and development put into this delineator design. The principles used in creating this delineator can be used to provide an outline for drivers to follow, or on a larger scale, provide actual roadway lighting in areas where it was never before possible or economically feasible. In either event, the number of fatal accidents will be decreased due to the improved driver visibility in the evening.
Resumo:
Background: Knowledge on the temporal dynamics of host/vector/parasite interactions is a pre-requisite to further address relevant questions in the fields of epidemiology and evolutionary ecology of infectious diseases. In studies of avian malaria, the natural history of Plasmodium parasites with their natural mosquito vectors, however, is mostly unknown. Methods: Using artificial water containers placed in the field, we monitored the relative abundance of parous females of Culex pipiens mosquitoes during two years (2010-2011), in a population in western Switzerland. Additionally, we used molecular tools to examine changes in avian malaria prevalence and Plasmodium lineage composition in female C. pipiens caught throughout one field season (April-August) in 2011. Results: C. pipiens relative abundance varied both between years and months, and was associated with temperature fluctuations. Total Plasmodium prevalence was high and increased from spring to summer months (13.1-20.3%). The Plasmodium community was composed of seven different lineages including P. relictum (SGS1, GRW11 and PADOM02 lineages), P. vaughani (lineage SYAT05) and other Plasmodium spp. (AFTRU5, PADOM1, COLL1). The most prevalent lineages, P. vaughani (lineage SYAT05) and P. relictum (lineage SGS1), were consistently found between years, although they had antagonistic dominance patterns during the season survey. Conclusions: Our results suggest that the time window of analysis is critical in evaluating changes in the community of avian malaria lineages infecting mosquitoes. The potential determinants of the observed changes as well as their implications for future prospects on avian malaria are discussed.
Resumo:
The opportunistic human pathogen Pseudomonas aeruginosa is able to utilize a wide range of carbon and nitrogen compounds, allowing it to grow in vastly different environments. The uptake and catabolism of growth substrates are organized hierarchically by a mechanism termed catabolite repression control (Crc) whereby the Crc protein establishes translational repression of target mRNAs at CA (catabolite activity) motifs present in target mRNAs near ribosome binding sites. Poor carbon sources lead to activation of the CbrAB two-component system, which induces transcription of the small RNA (sRNA) CrcZ. This sRNA relieves Crc-mediated repression of target mRNAs. In this study, we have identified novel targets of the CbrAB/Crc system in P. aeruginosa using transcriptome analysis in combination with a search for CA motifs. We characterized four target genes involved in the uptake and utilization of less preferred carbon sources: estA (secreted esterase), acsA (acetyl-CoA synthetase), bkdR (regulator of branched-chain amino acid catabolism) and aroP2 (aromatic amino acid uptake protein). Evidence for regulation by CbrAB, CrcZ and Crc was obtained in vivo using appropriate reporter fusions, in which mutation of the CA motif resulted in loss of catabolite repression. CbrB and CrcZ were important for growth of P. aeruginosa in cystic fibrosis (CF) sputum medium, suggesting that the CbrAB/Crc system may act as an important regulator during chronic infection of the CF lung.
Resumo:
Question: Outdoor occupational exposure could be associated with important cumulative and intense exposure to ultraviolet (UV) solar radiation. Such exposure would increase risk of skin cancer. However, little information exists on jobs associated with intense UV exposure. The objective of this study was to characterise occupational UV exposure in a representative sample in France. Methods: A population-based survey was conducted in May-June 2012 through computer-assisted telephonic interviews in population 25 to 69 years of age. Individual UV irradiation was computed with declared time and place of residence matched to UV records from satellite measurement (Eurosun project). We analysed factors influencing exposure to UV (annual average and seasonal peak). Results: A total of 1442 individuals declared having an occupational exposure to UV which represents 18% of population aged 25 to 69 years. Outdoor workers were more frequently men (58%), aged 40-54 (43%), with a phototype III or IV (69%). Occupations associated with highest UV exposure were: construction workers (annual daily average 62.8 Joules/m2), gardeners (62.6), farmers (52.8), culture/art/social sciences workers (52.0) and transport workers/mail carriers (49.5). The maximum of UVA exposure was found for occupation with a strong seasonality of exposure: culture, art or social sciences works (98.1 Joules/m2), construction works (97.2), gardening (96.7) and farming (95.0). Significant factors associated with high occupational UV exposure were gender (men vs. women: 53.6 vs. 42.6), phototype (IV vs. I: 51.9 vs. 45.5) and taking lunch outdoors (always vs. never: 59.8 vs. 48.6). Conclusion: Our study showed that some occupations were associated with particularly intense UV exposure such as farmers, gardeners, construction workers. Other unexpected occupations were also associated with high UV exposure such as transport workers, mail carriers and culture/art/social sciences workers.
Resumo:
Soil samples were collected from the top 7.5 cm of soil in a Strict Natural Reserve (SNR), a surrounding buffer zone, a cassava farm and matured plantations of Gmelina, teak, and pine, so as to determine if plantation establishment and intensive cultivation affect the density and diversity of soil mites. Altogether, 41 taxonomic groups of mites were identified. The diversity and densities of mites in within the SNR, the buffer zone and the Gmelina were more than the diversity and densities in the cassava farm, teak and pine plantations. Each plantation had its own unique community structure which was different from the community structure in the SNR plot. The SNR plot and Gmelina were dominated by detritivorous cryptostigmatid mites unlike teak and pine which were dominated by predatory mesostigmatid and prostigmatid mites respectively. Low cryptostigmatid mite densities in the plantations and cassava farm were seen as a consequence of low fertility status of the soil, the evidence of which was revealed by soil pH and organic matter data.
Resumo:
O objetivo deste trabalho foi estudar o efeito da radiação solar e da temperatura entre a emergência e o pendoamento na taxa de crescimento da cultura, no número de grãos por unidade de taxa de crescimento, e nas relações dessas variáveis com o rendimento final de grãos de híbridos de milho. Os ensaios foram conduzidos nos anos agrícolas de 1994/95, 1995/96 e 1996/97 com os híbridos comerciais C-901, XL-560 e XL-678, em 1994/95, e os híbridos C-901, XL-212 e XL-370, nos outros anos. Os tratamentos consistiram em diferentes datas de plantio de setembro a dezembro, em 1994/95, e de agosto a dezembro, em 1995/96 e 1996/97. No período entre emergência e espigamento, as plantas acumularam maior quantidade de massa seca quando a radiação solar incidente foi mais elevada. No entanto, como a temperatura média do ar exerce efeito na duração do período, a taxa de crescimento foi mais dependente da temperatura do que da radiação. Também neste período, o efeito da temperatura foi inversamente proporcional ao do número de grãos por unidade de taxa de crescimento, possivelmente por causa do maior tempo disponível para interceptar a radiação solar. Decorrente da associação entre temperatura e radiação, o coeficiente fototérmico foi positivamente associado ao rendimento de grãos.