919 resultados para SECRETION SIGNALS
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Data were extracted from the U.S. Navy Fleet Numerical Oceanographic Center Master Oceanographic Observation Data Set for a 200 km to 300 km wide coastal strip on the west coast of the United States. These data were averaged for the September through February (winter) and March through August (summer) intervals. The resulting winter temperature anomaly values show the El Nino signal in the CCC [Coastal California Current] as positive temperature anomalies from the surface to at least 300 m.
Resumo:
Empirical orthogonal function (EOF) analysis and regression analysis are used to investigate zonally averaged seasonal temperature anomaly patterns and trends in the lower stratosphere and upper troposphere. The first four EOFs explain 64 percent of the temperature variance and can be related, respectively, to the solar flux (SF) and El Niño/Southern Oscillation (ENSO), to the quasi-biennial oscillation (QBO), to atmospheric carbon dioxide (CO2) and turbidity (TB), and to ENSO. The signal of the fourth EOF is modulated in January to March by the solar flux, with the sense of the modulation determined by the phase of the quasi-biennial oscillation.
Particle filters for demodulation of M-ary modulated signals in noisy fading communication channels.
Resumo:
Fluctuations in primary productivity at two subalpine lakes reveal both meteorological and biological influences. At Castle Lake, California, large-scale climate events such as the El Niño/Southern Oscillation affect total annual production and, combined with human fishing activity, modify the seasonal pattern of productivity. At Lake Tahoe, California-Nevada, local spring weather conditions modulate annual production and its seasonality by determining the depth of mixing and resulting internal nutrient load. Climatic conditions also contribute to deviations from the long-term trend in productivity by increasing the incidence of forest fires and through anomalous external nutrient loads during precipitation extremes. A 3-year cycle in productivity of as yet unknown origin has also been detected at Lake Tahoe.
Resumo:
A new interpolation technique has been developed for replacing missing samples in a sampled waveform drawn from a stationary stochastic process, given the power spectrum for the process. The method works with a finite block of data and is based on the assumption that components of the block DFT are Gaussian zero-mean independent random variables with variance proportional to the power spectrum at each frequency value. These assumptions make the interpolator particularly suitable for signals with a sharply-defined harmonic structure, such as audio waveforms recorded from music or voiced speech. Some results are presented and comparisons are made with existing techniques.