878 resultados para Rumble strip
Resumo:
The vertical uplift resistance of a group of two horizontal coaxial strip anchors, embedded in a general c-phi soil (where c is the unit cohesion and phi is the soil friction angle), has been determined by using the lower bound finite element limit analysis. The variation of uplift factors F-c and F-gamma, due to the components of soil cohesion and unit weight, respectively, with changes in depth (H)/width (B) has been established for different values of vertical spacing (S)/B. As compared to a single isolated anchor, the group of two anchors provides a significantly greater magnitude of F-c for phi <= 20 degrees and with H/B >= 3. The magnitude of F-c becomes almost maximum when S/B is kept closer to 0.5H/B. On the other hand, with the same H/B, as compared to a single anchor, hardly any increase in F-gamma occurs for a group of two anchors.
Resumo:
The vertical uplift resistance for a group of two horizontal coaxial rigid strip anchors embedded in clay under undrained condition has been determined by using the upper bound theorem of limit analysis in combination with finite elements. An increase of undrained shear strength of soil mass with depth has been incorporated. The uplift factor F-c gamma has been computed. As compared to a single isolated anchor, a group of two anchors provides greater magnitude of the uplift resistance. For a given embedment ratio, the group of two anchors generates almost the maximum uplift resistance when the upper anchor is located midway between ground surface and the lower anchor. For a given embedment ratio, F-c gamma increases linearly with an increase in the normalized unit weight of soil mass up to a certain value before attaining a certain maximum magnitude; the maximum value of F-c gamma increases with an increase in embedment ratio. DOI: 10.1061/(ASCE)GT.19435606.0000599. (C) 2012 American Society of Civil Engineers.
Resumo:
This work intends to demonstrate the importance of a geometrically nonlinear cross-sectional analysis of certain composite beam-based four-bar mechanisms in predicting system dynamic characteristics. All component bars of the mechanism are made of fiber reinforced laminates and have thin rectangular cross-sections. They could, in general, be pre-twisted and/or possess initial curvature, either by design or by defect. They are linked to each other by means of revolute joints. We restrict ourselves to linear materials with small strains within each elastic body (beam). Each component of the mechanism is modeled as a beam based on geometrically non-linear 3-D elasticity theory. The component problems are thus split into 2-D analyses of reference beam cross-sections and non-linear 1-D analyses along the three beam reference curves. For the thin rectangular cross-sections considered here, the 2-D cross-sectional non-linearity is also overwhelming. This can be perceived from the fact that such sections constitute a limiting case between thin-walled open and closed sections, thus inviting the non-linear phenomena observed in both. The strong elastic couplings of anisotropic composite laminates complicate the model further. However, a powerful mathematical tool called the Variational Asymptotic Method (VAM) not only enables such a dimensional reduction, but also provides asymptotically correct analytical solutions to the non-linear cross-sectional analysis. Such closed-form solutions are used here in conjunction with numerical techniques for the rest of the problem to predict multi-body dynamic responses more quickly and accurately than would otherwise be possible. The analysis methodology can be viewed as a three-step procedure: First, the cross-sectional properties of each bar of the mechanism is determined analytically based on an asymptotic procedure, starting from Classical Laminated Shell Theory (CLST) and taking advantage of its thin strip geometry. Second, the dynamic response of the non-linear, flexible four-bar mechanism is simulated by treating each bar as a 1-D beam, discretized using finite elements, and employing energy-preserving and -decaying time integration schemes for unconditional stability. Finally, local 3-D deformations and stresses in the entire system are recovered, based on the 1-D responses predicted in the previous step. With the model, tools and procedure in place, we identify and investigate a few four-bar mechanism problems where the cross-sectional non-linearities are significant in predicting better and critical system dynamic characteristics. This is carried out by varying stacking sequences (i.e. the arrangement of ply orientations within a laminate) and material properties, and speculating on the dominating diagonal and coupling terms in the closed-form non-linear beam stiffness matrix. A numerical example is presented which illustrates the importance of 2-D cross-sectional non-linearities and the behavior of the system is also observed by using commercial software (I-DEAS + NASTRAN + ADAMS). (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We report on the novel flow sensing application of piezoelectric ZnO thin film deposited on Phynox alloy sensing element. Characterization of piezoelectric ZnO films deposited on Phynox (Elgiloy) substrate at different RF powers is discussed. ZnO films deposited at RF power of 100W were found to have fine c-axis orientation, possesses excellent surface morphology with lower rms surface roughness of 1.87 nm and maximum d(31) coefficient value 4.7 pm V-1. The thin cantilever strip of Phynox alloy with ZnO film as a sensing layer for flow sensing has been tested for flow rates ranging from 2 to 18 L min(-1). A detailed theoretical analysis of the experimental set-up showing the relationship between output voltage and force at a particular flow rate has been discussed. The sensitivity of now sensing element is similar to 18 mV/(L min(-1)) and typical response time is of the order of 20 m s. The sensing element is calibrated using in-house developed testing set-up. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This paper presents simulation and experimental studies on the characterization of ultra wideband antennas for imaging applications. Various configurations of antennas were simulated for their time and frequency domain characteristics with special emphasis on flat responses for group delay and gain versus frequency. Parametric studies reported here showed that locating the capacitive feed strip near the vertex of the triangle gave better response in these respects. An antenna with operating frequency from 2.9GHz to 4.1GHz was fabricated and measured.
Resumo:
In this paper we demonstrate the use of multi-port network modeling to analyze one such antenna with fractal shaped parts. Based on simulation and experimental studies, it has been demonstrated that model can accurately predict the input characteristics of antennas with Minkowski geometry replacing a side micro strip square ring.
Resumo:
Reliable estimates of species density are fundamental to planning conservation strategies for any species; further, it is equally crucial to identify the most appropriate technique to estimate animal density. Nocturnal, small-sized animal species are notoriously difficult to census accurately and this issue critically affects their conservation status, We carried out a field study in southern India to estimate the density of slender loris, a small-sized nocturnal primate using line and strip transects. Actual counts of study individuals yielded a density estimate of 1.61 ha(-1); density estimate from line transects was 1.08 ha(-1); and density estimates varied from 1.06 ha(-1) to 0.59 ha(-1) in different fixed-width strip transects. We conclude that line and strip transects may typically underestimate densities of cryptic, nocturnal primates.
Resumo:
The horizontal pullout capacity of a group of two vertical strip plate anchors, placed along the same vertical plane, in a fully cohesive soil has been computed by using the lower bound finite element limit analysis. The effect of spacing between the plate anchors on the magnitude of total group failure load (P-uT) has been evaluated. An increase of soil cohesion with depth has also been incorporated in the analysis. For a weightless medium, the total pullout resistance of the group becomes maximum corresponding to a certain optimum spacing between the anchor plates which has been found to vary generally between 0.5B and B; where B is the width of the anchor plate. As compared to a single plate anchor, the increase in the pullout resistance for a group of two anchors becomes greater at a higher embedment ratio. The effect of soil unit weight has also been analyzed. It is noted that the interference effect on the pullout resistance increases further with an increase in the unit weight of soil mass.
Resumo:
By applying the lower bound theorem of limit analysis in conjunction with finite elements and nonlinear optimization, the bearing capacity factor N has been computed for a rough strip footing by incorporating pseudostatic horizontal seismic body forces. As compared with different existing approaches, the present analysis is more rigorous, because it does not require an assumption of either the failure mechanism or the variation of the ratio of the shear to the normal stress along the footing-soil interface. The magnitude of N decreases considerably with an increase in the horizontal seismic acceleration coefficient (kh). With an increase in kh, a continuous spread in the extent of the plastic zone toward the direction of the horizontal seismic body force is noted. The results obtained from this paper have been found to compare well with the solutions reported in the literature. (C) 2013 American Society of Civil Engineers.
Resumo:
The ultimate bearing capacity of strip foundations in the presence of inclined groundwater flow, considering both upward and downward flow directions, has been determined by using the lower bound finite-element limit analysis. A numerical solution has been generated for both smooth and rough footings placed on frictional soils. A correction factor (f gamma), which needs to be multiplied with the N gamma-term, has been computed to account for groundwater seepage. The variation of f gamma has been obtained as a function of the hydraulic gradient (i) for various inclinations of groundwater flow. For a given magnitude of i, there exists a certain critical inclination of the flow for which the value of f gamma is minimized. With an upward flow, for all flow inclinations, the magnitude of f gamma always reduces with an increase in the value of i. An example has also been provided to illustrate the application of the obtained results when designing foundations in the presence of groundwater seepage.
Resumo:
The horizontal pullout capacity of a group of two vertical strip anchors placed along the same vertical plane in sand has been determined by using the upper bound finite elements limit analysis. The variation of the efficiency factor (xi (gamma) ) with changes in clear spacing (S) between the anchors has been established to evaluate the total group failure load for different values of (i) embedment ratio (H/B), (ii) soil internal friction angle (phi), and (iii) anchor-soil interface friction angle (delta). The total group failure load, for a given H/B, becomes always maximum corresponding to a certain optimal spacing (S-opt). The value of S-opt/B was found to lie in a range of 0.5-1.4. The maximum magnitude of xi (gamma) increases generally with increases in H/B, phi and delta.
Resumo:
Solid-solid collapse transition in open framework structures is ubiquitous in nature. The real difficulty in understanding detailed microscopic aspects of such transitions in molecular systems arises from the interplay between different energy and length scales involved in molecular systems, often mediated through a solvent. In this work we employ Monte-Carlo simulation to study the collapse transition in a model molecular system interacting via both isotropic as well as anisotropic interactions having different length and energy scales. The model we use is known as Mercedes-Benz (MB), which, for a specific set of parameters, sustains two solid phases: honeycomb and oblique. In order to study the temperature induced collapse transition, we start with a metastable honeycomb solid and induce transition by increasing temperature. High density oblique solid so formed has two characteristic length scales corresponding to isotropic and anisotropic parts of interaction potential. Contrary to the common belief and classical nucleation theory, interestingly, we find linear strip-like nucleating clusters having significantly different order and average coordination number than the bulk stable phase. In the early stage of growth, the cluster grows as a linear strip, followed by branched and ring-like strips. The geometry of growing cluster is a consequence of the delicate balance between two types of interactions, which enables the dominance of stabilizing energy over destabilizing surface energy. The nucleus of stable oblique phase is wetted by intermediate order particles, which minimizes the surface free energy. In the case of pressure induced transition at low temperature the collapsed state is a disordered solid. The disordered solid phase has diverse local quasi-stable structures along with oblique-solid like domains. (C) 2013 AIP Publishing LLC.
Resumo:
The ultimate bearing capacity of strip foundations subjected to horizontal groundwater flow has been computed by making use of the stress characteristics method which is well known for its capability in solving quite accurately different stability problems in geotechnical engineering. The numerical solution has been generated both for smooth and rough footings placed on frictional soils. A correction factor (fγ) associated with Nγ term, to account for the existence of ground water flow, has been introduced. The variation of fγ has been obtained as a function of hydraulic gradient (i) for different values of soil frictional angle. The magnitude of fγ reduces continuously with an increase in the value of i.
Resumo:
This paper presents a simple technique for reducing the computational effort while solving any geotechnical stability problem by using the upper bound finite element limit analysis and linear optimization. In the proposed method, the problem domain is discretized into a number of different regions in which a particular order (number of sides) of the polygon is chosen to linearize the Mohr-Coulomb yield criterion. A greater order of the polygon needs to be selected only in that region wherein the rate of the plastic strains becomes higher. The computational effort required to solve the problem with this implementation reduces considerably. By using the proposed method, the bearing capacity has been computed for smooth and rough strip footings and the results are found to be quite satisfactory.
Resumo:
The effect of consolidation on the undrained bearing capacity of both rough and smooth strip and circular surface foundations is investigated, examining the influence of the magnitude and duration of an applied preload and the initial over-consolidation ratio of the deposit. The investigation comprised small strain finite-element analysis, with the soil response represented by Modified Cam Clay. The results are distilled into dimensionless and generalised forms, from which simple trends emerge. Based on these results, a simple method for predicting the consolidated undrained bearing capacity is proposed.