984 resultados para Rubisco small subunit gene ( rbcS) Promoter


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tese de mestrado em Biologia Humana e Ambiente, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2015

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In liver, the glyoxylate cycle contributes to two metabolic functions, urea and glucose synthesis. One of the key enzymes in this pathway is glyoxylate reductase/hydroxypyruvate reductase (GRHPR) whose dysfunction in human causes primary hyperoxaluria type 2, a disease resulting in oxalate accumulation and formation of kidney stones. In this study, we provide evidence for a transcriptional regulation by the peroxisome proliferator-activated receptor alpha (PPARalpha) of the mouse GRHPR gene in liver. Mice fed with a PPARalpha ligand or in which PPARalpha activity is enhanced by fasting increase their GRHPR gene expression via a peroxisome proliferator response element located in the promoter region of the gene. Consistent with these observations, mice deficient in PPARalpha present higher plasma levels of oxalate in comparison with their wild type counterparts. As expected, the administration of a PPARalpha ligand (Wy-14,643) reduces the plasma oxalate levels. Surprisingly, this effect is also observed in null mice, suggesting a PPARalpha-independent action of the compound. Despite a high degree of similarity between the transcribed region of the human and mouse GRHPR gene, the human promoter has been dramatically reorganized, which has resulted in a loss of PPARalpha regulation. Overall, these data indicate a species-specific regulation by PPARalpha of GRHPR, a key gene of the glyoxylate cycle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As most metabolic studies are conducted in male animals, understanding the sex specificity of the underlying molecular pathways has been broadly neglected; for example, whether PPARs elicit sex-dependent responses has not been determined. Here we show that in mice, PPARalpha has broad female-dependent repressive actions on hepatic genes involved in steroid metabolism and immunity. In male mice, this effect was reproduced by the administration of a synthetic PPARalpha ligand. Using the steroid oxysterol 7alpha-hydroxylase cytochrome P4507b1 (Cyp7b1) gene as a model, we elucidated the molecular mechanism of this sex-specific PPARalpha-dependent repression. Initial sumoylation of the ligand-binding domain of PPARalpha triggered the interaction of PPARalpha with GA-binding protein alpha (GABPalpha) bound to the target Cyp7b1 promoter. Histone deacetylase and DNA and histone methylases were then recruited, and the adjacent Sp1-binding site and histones were methylated. These events resulted in loss of Sp1-stimulated expression and thus downregulation of Cyp7b1. Physiologically, this repression conferred on female mice protection against estrogen-induced intrahepatic cholestasis, the most common hepatic disease during pregnancy, suggesting a therapeutic target for prevention of this disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

RNA polymerase III (Pol III) occurs in two versions, one containing the POLR3G subunit and the other the closely related POLR3GL subunit. It is not clear whether these two Pol III forms have the same function, in particular whether they recognize the same target genes. We show that the POLR3G and POLR3GL genes arose from a DNA-based gene duplication, probably in a common ancestor of vertebrates. POLR3G- as well as POLR3GL-containing Pol III are present in cultured cell lines and in normal mouse liver, although the relative amounts of the two forms vary, with the POLR3G-containing Pol III relatively more abundant in dividing cells. Genome-wide chromatin immunoprecipitations followed by high-throughput sequencing (ChIP-seq) reveal that both forms of Pol III occupy the same target genes, in very constant proportions within one cell line, suggesting that the two forms of Pol III have a similar function with regard to specificity for target genes. In contrast, the POLR3G promoter-not the POLR3GL promoter-binds the transcription factor MYC, as do all other promoters of genes encoding Pol III subunits. Thus, the POLR3G/POLR3GL duplication did not lead to neo-functionalization of the gene product (at least with regard to target gene specificity) but rather to neo-functionalization of the transcription units, which acquired different mechanisms of regulation, thus likely affording greater regulation potential to the cell.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

MHC class II (MHCII) molecules play a pivotal role in the induction and regulation of immune responses. The transcriptional coactivator class II transactivator (CIITA) controls MHCII expression. The CIITA gene is regulated by three independent promoters (pI, pIII, pIV). We have generated pIV knockout mice. These mice exhibit selective abrogation of interferon (IFN)-gamma-induced MHCII expression on a wide variety of non-bone marrow-derived cells, including endothelia, epithelia, astrocytes, and fibroblasts. Constitutive MHCII expression on cortical thymic epithelial cells, and thus positive selection of CD4(+) T cells, is also abolished. In contrast, constitutive and inducible MHCII expression is unaffected on professional antigen-presenting cells, including B cells, dendritic cells, and IFN-gamma-activated cells of the macrophage lineage. pIV(-/-) mice have thus allowed precise definition of CIITA pIV usage in vivo. Moreover, they represent a unique animal model for studying the significance and contribution of MHCII-mediated antigen presentation by nonprofessional antigen-presenting cells in health and disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Duchenne muscular dystrophy is an X-linked genetic disease caused by the absence of functional dystrophin. Pharmacological upregulation of utrophin, the autosomal homologue of dystrophin, offers a potential therapeutic approach to treat Duchenne patients. Full-length utrophin mRNA is transcribed from two alternative promoters, called A and B. In contrast to the utrophin promoter A, little is known about the factors regulating the activity of the utrophin promoter B. Computer analysis of this second promoter revealed the presence of several conserved binding motives for Ets-transcription factors. Using electrotransfer of cDNA into mouse muscles, we demonstrate that a genetically modified beta-subunit of the Ets-transcription factor GA-binding protein potently activates a utrophin promoter B reporter construct in innervated muscle fibers in vivo. These results make the GA-binding protein and the signaling cascade regulating its activity in muscle cells, potential targets for the pharmacological modulation of utrophin expression in Duchenne patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

MHC class II (MHCII) molecules play a pivotal role in the induction and regulation of immune responses. The transcriptional coactivator class II transactivator (CIITA) controls MHCII expression. The CIITA gene is regulated by three independent promoters (pI, pIII, pIV). We have generated pIV knockout mice. These mice exhibit selective abrogation of interferon (IFN)-gamma-induced MHCII expression on a wide variety of non-bone marrow-derived cells, including endothelia, epithelia, astrocytes, and fibroblasts. Constitutive MHCII expression on cortical thymic epithelial cells, and thus positive selection of CD4(+) T cells, is also abolished. In contrast, constitutive and inducible MHCII expression is unaffected on professional antigen-presenting cells, including B cells, dendritic cells, and IFN-gamma-activated cells of the macrophage lineage. pIV(-/-) mice have thus allowed precise definition of CIITA pIV usage in vivo. Moreover, they represent a unique animal model for studying the significance and contribution of MHCII-mediated antigen presentation by nonprofessional antigen-presenting cells in health and disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Proline- and acid-rich (PAR) basic region leucine zipper (bZIP) proteins thyrotroph embryonic factor (TEF), D-site-binding protein (DBP), and hepatic leukemia factor have been involved in neurotransmitter homeostasis and amino acid metabolism. Here we demonstrate a novel role for these proteins in the transcriptional control of a BH3-only gene. PAR bZIP proteins are able to transactivate the promoter of bcl-gS. This promoter is particularly responsive to TEF activation and is silenced by NFIL3, a repressor that shares the consensus binding site with PAR bZIP proteins. Consistently, transfection of TEF induces the expression of endogenous bcl-gS in cancer cells, and this induction is independent of p53. A naturally occurring variant of DBP (tDBP), lacking the transactivation domain, has been identified and shown to impede the formation of active TEF dimers in a competitive manner and to reduce the TEF-dependent induction of bcl-gS. Of note, treatment of cancer cells with etoposide induces TEF activation and promotes the expression of bcl-gS. Furthermore, blockade of bcl-gS or TEF expression by a small interfering RNA strategy or transfection with tDBP significantly reduces the etoposide-mediated apoptotic cell death. These findings represent the first described role for PAR bZIP proteins in the regulation of a gene involved in the execution of apoptosis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Whole genome sequences of microbial pathogens present new opportunities for clinical application. Presently, genome sequencing of the human protozoan parasite Leishmania major is in progress. The driving forces behind the genome project are to identify genes with key cellular functions and new drug targets, to increase knowledge on mechanisms of drug resistance and to favor technology transfer to scientists from endemic countries. Sequencing of the genome is also aimed at the identification of genes that are expressed in the infectious stages of the parasite and in particular in the intracellular form of the parasite. Several protective antigens of Leishmania have been identified. In addition to these antigens, lysosomal cysteine proteinases (CPs) have been characterized in different strains of Leishmania and Trypanosoma, as new target molecules. Recently, we have isolated and characterized Type I (CPB) and Type II (CPA) cysteine proteinase encoding genes from L. major. The exact function of cysteine proteinases of Leishmania is not completely understood, although there are a few reports describing their role as virulence factors. One specific feature of CPB in Leishmania and other trypanosomatids, is the presence of a Cterminal extension (CTE) which is possibly indicative of conserved structure and function. Recently, we demonstrated that DNA immunization of genetically susceptible BALB / c mice, using a cocktail of CPB and CPA genes, induced long lasting protection against L. major infection. This review intends to give an overview of the current knowledge on genetic vaccination used against leishmaniasis and the importance of CP genes for such an approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Résumé Régulation de l'expression de la Connexin36 dans les cellules sécrétrices d'insuline La communication intercellulaire est en partie assurée via des jonctions communicantes de type "gap". Dans la cellule ß pancréatique, plusieurs observations indiquent que le couplage assuré par des jonctions gap formées parla Connexine36 (Cx36) est impliqué dans le contrôle de la sécrétion de l'insuline. De plus, nous avons récemment démontré qu'un niveau précis d'expression de la Cx36 est nécessaire pour maintenir une bonne coordination de l'ensemble des cellules ß, et permettre ainsi une sécrétion synchrone et contrôlée d'insuline. Le développement du diabète et du syndrome métabolique est partiellement dû à une altération de la capacité des cellules ß à sécréter de l'insuline en réponse à une augmentation de la glycémie. Cette altération est en partie causée par l'augmentation prolongée des taux circulant de glucose, mais aussi de lipides, sous la forme d'acides gras libres, et de LDL (Low Density Lipoproteins), particules assurant le transport des acides gras et du cholestérol dans le sang. Nous avons étudié la régulation de l'expression de la Cx36 dans différentes conditions reflétant la physiopathologie du diabète de type 2 et du syndrome métabolique et démontré qu'une exposition prolongée à des concentrations élevées de glucose, de LDL, ainsi que de palmitate (acide gras saturé le plus abondant dans l'organisme), inhibent l'expression de la Cx36 dans les cellules ß. Cette inhibition implique l'activation de la PKA (Proteine Kinase A), qui stimule à son tour l'expression du facteur de transcription ICER-1 (Inductible cAMP Early Repressor-1). Ce puissant répresseur se fixe spécifiquement sur un motif CRE (cAMP Response Element), situé dans le promoteur du gène de la Cx36, inhibant ainsi son expression. Nous avons de plus démontré que des cytokines pro-inflammatoires, qui pourraient contribuer au développement du diabète, inhibent également l'expression de la Cx36. Cependant, les cytokines agissent indépendamment du répresseur ICER-1, mais selon un mécanisme requérant l'activation de l'AMPK (AMP dependant protein kinase). Sachant qu'un contrôle précis des niveaux d'expression de la Cx36 est un élément déterminant pour une sécrétion optimale de l'insuline, nos résultats suggèrent que la Cx36 pourrait être impliquée dans l'altération de la sécrétion de l'insuline contribuant à l'apparition du diabète de type 2. Summary A particular way by which cells communicate with each other is mediated by gap junctions, transmembrane structures providing a direct pathway for the diffusion of small molecules between adjacent cells. Gap junctional communication is required to maintain a proper functioning of insulin-secreting ß-cells. Moreover, the expression levels of connexin36 (Cx36), the sole gap junction protein expressed in ß-cells, are critical in maintaining glucose-stimulated insulin secretion. Chronic hyperglycemia and hyperlipidemia exert deleterious effects on insulin secretion and may contribute to the progressive ß-cell failure linked to the development of type 2 diabetes and metabolic syndrome. Since modulations of the Cx36 levels might impair ß-cell function, the general aim of this work was to elucidate wether elevated levels of glucose and lipids affect Cx36 expression. The first part of this work was dedicated to the study of the effect of high glucose concentrations on Cx36 expression. We demonstrated that glucose transcriptionally down-regulates the expression of Cx36 in insulin-secreting cells through activation of the protein kinase A (PKA), which in turn stimulates the expression of the inducible cAMP early repressor-1 (ICER-1). This repressor binds to a highly conserved cAMP response element (CRE) located in the Cx36 promoter, thereby inhibiting Cx36 expression. The second part of this thesis consisted in studying the effects of sustained exposure to free fatty acids (FFA) and human lipoproteins on Cx36 levels. The experiments revealed that the most abundant FFA, palmitate, as well as the atherogenic low density lipoproteins (LDL), also stimulate ICER-1 expression, resulting in Cx36 down-regulation. Finally, the third part of the work focused on the consequences of long-term exposure to proinflammatory cytokines on Cx36 content. Interleukin-1 ß (IL-1 ß) inhibits Cx36 expression and its effect is potentialized by tumor necrosis factor α (TNFα) and interferon γ (IFNγ). We further unveiled that the cytokines effect on Cx36 levels requires activation of the AMP dependent protein kinase (AMPK). Prolonged exposures to glucose, palmitate, LDL, and pro-inflammatory cytokines have all been proposed to contribute to the development of diabetes and metabolic syndrome. Since Cx36 expression levels are critical to maintain ß-cell function, Cx36 down-regulation by glucose, lipids, and cytokines might participate to the ß-cell failure associated with diabetes development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

INTRODUCTION: Common variation in the CHRNA5-CHRNA3-CHRNB4 gene region is robustly associated with smoking quantity. Conversely, the association between one of the most significant single nucleotide polymorphisms (SNPs; rs1051730 within the CHRNA3 gene) with perceived difficulty or willingness to quit smoking among current smokers is unknown. METHODS: Cross-sectional study including current smokers, 502 women, and 552 men. Heaviness of smoking index (HSI), difficulty, attempting, and intention to quit smoking were assessed by questionnaire. RESULTS: The rs1051730 SNP was associated with increased HSI (age, gender, and education-adjusted mean ± SE: 2.6 ± 0.1, 2.2 ± 0.1, and 2.0 ± 0.1 for AA, AG, and GG genotypes, respectively, p < .01). Multivariate logistic regression adjusting for gender, age, education, leisure-time physical activity, and personal history of cardiovascular or lung disease showed rs1051730 to be associated with higher smoking dependence (odds ratio [OR] and 95% CI for each additional A-allele: 1.38 [1.11-1.72] for smoking more than 20 cigarette equivalents/day; 1.31 [1.00-1.71] for an HSI &#8805;5 and 1.32 [1.05-1.65] for smoking 5 min after waking up) and borderline associated with difficulty to quit (OR = 1.29 [0.98-1.70]), but this relationship was no longer significant after adjusting for nicotine dependence. Also, no relationship was found with willingness (OR = 1.03 [0.85-1.26]), attempt (OR = 1.00 [0.83-1.20]), or preparation (OR = 0.95 [0.38-2.38]) to quit. Similar findings were obtained for other SNPs, but their effect on nicotine dependence was no longer significant after adjusting for rs1051730. Conclusions: These data confirm the effect of rs1051730 on nicotine dependence but failed to find any relationship with difficulty, willingness, and motivation to quit.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tubulointerstitial inflammation is a common feature of renal diseases. We have investigated the relationship between inflammation and Na(+) transport in the collecting duct (CD) using the mCCD(cl1) and mpkCDD(cl4) principal cell models. Lipopolysaccharide (LPS) decreased basal and aldosterone-stimulated amiloride-sensitive transepithelial current in a time-dependent manner. This effect was associated with a decrease in serum and glucocorticoid-regulated kinase 1 (SGK1) mRNA and protein levels followed by a decrease in epithelial sodium channel (ENaC) alpha-subunit mRNA levels. The LPS-induced decrease in SGK1 expression was confirmed in isolated rat CD. This decreased expression of either SGK1 or the ENaC alpha-subunit was not due to enhanced degradation of mRNA. In contrast, LPS inhibited transcriptional activity of the SGK1 promoter measured by luciferase-reporter gene assay. The effect of LPS was not mediated by inhibition of mineralocorticoid or glucocorticoid receptor, because expression of both receptors was unchanged and blockade of either receptor by spironolactone or RU486, respectively, did not prevent the down-regulation of SGK1. The effect of LPS was mediated by the canonical NF-kappaB pathway, as overexpression of a constitutively active mutant, IKKbeta (inhibitor of nuclear factor kappaB kinase-beta) decreased SGK1 mRNA levels, and knockdown of p65 NF-kappaB subunit by small interfering RNA increased SGK1 mRNA levels. Chromatin immunoprecipitation showed that LPS increased p65 binding to two NF-kappaB sites along the SGK1 promoter. In conclusion, we show that activation of the NF-kappaB pathway down-regulates SGK1 expression, which might lead to decreased ENaC alpha-subunit expression, ultimately resulting in decreased Na(+) transport.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The secondary metabolite hydrogen cyanide (HCN) is produced by Pseudomonas fluorescens from glycine, essentially under microaerophilic conditions. The genetic basis of HCN synthesis in P. fluorescens CHA0 was investigated. The contiguous structural genes hcnABC encoding HCN synthase were expressed from the T7 promoter in Escherichia coli, resulting in HCN production in this bacterium. Analysis of the nucleotide sequence of the hcnABC genes showed that each HCN synthase subunit was similar to known enzymes involved in hydrogen transfer, i.e., to formate dehydrogenase (for HcnA) or amino acid oxidases (for HcnB and HcnC). These similarities and the presence of flavin adenine dinucleotide- or NAD(P)-binding motifs in HcnB and HcnC suggest that HCN synthase may act as a dehydrogenase in the reaction leading from glycine to HCN and CO2. The hcnA promoter was mapped by primer extension; the -40 sequence (TTGGC ... ATCAA) resembled the consensus FNR (fumarate and nitrate reductase regulator) binding sequence (TTGAT ... ATCAA). The gene encoding the FNR-like protein ANR (anaerobic regulator) was cloned from P. fluorescens CHA0 and sequenced. ANR of strain CHA0 was most similar to ANR of P. aeruginosa and CydR of Azotobacter vinelandii. An anr mutant of P. fluorescens (CHA21) produced little HCN and was unable to express an hcnA-lacZ translational fusion, whereas in wild-type strain CHA0, microaerophilic conditions strongly favored the expression of the hcnA-lacZ fusion. Mutant CHA21 as well as an hcn deletion mutant were impaired in their capacity to suppress black root rot of tobacco, a disease caused by Thielaviopsis basicola, under gnotobiotic conditions. This effect was most pronounced in water-saturated artificial soil, where the anr mutant had lost about 30% of disease suppression ability, compared with wild-type strain CHA0. These results show that the anaerobic regulator ANR is required for cyanide synthesis in the strictly aerobic strain CHA0 and suggest that ANR-mediated cyanogenesis contributes to the suppression of black root rot.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Resistance in Mycobacterium tuberculosis to isoniazid (INH) is caused by mutations in the catalase-peroxidase gene (katG) , and within the inhA promoter and/or in structural gene. A small percentage (~ 10%) of INH-resistant strains do not present mutations in both of these loci. Other genes have been associated with INH resistance including the gene encoding for NADH dehydrogenase (ndh) . Here we report the detection of two ndh locus mutations (CGT to TGT change in codon 13 and GTG to GCG change in codon 18) by analyzing 23 INH-resistant and in none of 13 susceptible isolates from Brazilian tuberculosis patients. We also detected two isolates without a mutation in ndh, or any of the other INH resistance-associated loci examined, suggesting the existence of additional, as yet to be described, INH resistance mechanisms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Leishmania (Sauroleishmania) tarentolae has biotechnological potential for use as live vaccine against visceral leishmaniasis and as a system for the over expression of eukaryotic proteins that possess accurate post-translational modifications. For both purposes, new systems for protein expression in this non-pathogenic protozoan are necessary. The ribosomal RNA promoter proved to be a stronger transcription driver since its use yielded increased levels of recombinant protein in organisms of both genera Trypanosoma or Leishmania. We have evaluated heterologous expression systems using vectors with two different polypyrimidine tracts in the splice acceptor site by measuring a reporter gene transcribed from L. tarentolae RNA polymerase I promoter. Our data indicate that the efficiency of chloramphenicol acetyl transferase expression changed drastically with homologous or heterologous sequences, depending on the polypyrimidine tract used in the construct and differences in size and/or distance from the AG dinucleotide. In relation to the promoter sequence the reporter expression was higher in heterologous lizard-infecting species than in the homologous L. tarentolae or in the mammalian-infecting L. (Leishmania) amazonensis.