907 resultados para Root coverage
Resumo:
The application of microbial biocontrol agents for the control of fungal plant diseases and plant insect pests is a promising approach in the development of environmentally benign pest management strategies. The ideal biocontrol organism would be a bacterium or a fungus with activity against both, insect pests and fungal pathogens. Here we demonstrate the oral insecticidal activity of the root colonizing Pseudomonas fluorescens CHA0, which is so far known for its capacity to efficiently suppress fungal plant pathogens. Feeding assays with CHA0-sprayed leaves showed that this strain displays oral insecticidal activity and is able to efficiently kill larvae of three important insect pests. We further show data indicating that the Fit insect toxin produced by CHA0 and also metabolites controlled by the global regulator GacA contribute to oral insect toxicity.
Resumo:
We establish existence and non-existence results to the Brezis-Nirenberg type problem involving the square root of the Laplacian in a bounded domain with zero Dirichlet boundary condition.
Resumo:
BACKGROUND: Standard indicators of quality of care have been developed in the United States. Limited information exists about quality of care in countries with universal health care coverage.OBJECTIVE: To assess the quality of preventive care and care for cardiovascular risk factors in a country with universal health care coverage.DESIGN AND PARTICIPANTS: Retrospective cohort of a random sample of 1,002 patients aged 50-80 years followed for 2 years from all Swiss university primary care settings.MAIN MEASURES: We used indicators derived from RAND's Quality Assessment Tools. Each indicator was scored by dividing the number of episodes when recommended care was delivered by the number of times patients were eligible for indicators. Aggregate scores were calculated by taking into account the number of eligible patients for each indicator.KEY RESULTS: Overall, patients (44% women) received 69% of recommended preventive care, but rates differed by indicators. Indicators assessing annual blood pressure and weight measurements (both 95%) were more likely to be met than indicators assessing smoking cessation counseling (72%), breast (40%) and colon cancer screening (35%; all p < 0.001 for comparisons with blood pressure and weight measurements). Eighty-three percent of patients received the recommended care for cardiovascular risk factors, including > 75% for hypertension, dyslipidemia and diabetes. However, foot examination was performed only in 50% of patients with diabetes. Prevention indicators were more likely to be met in men (72.2% vs 65.3% in women, p < 0.001) and patients < 65 years (70.1% vs 68.0% in those a parts per thousand yen65 years, p = 0.047).CONCLUSIONS: Using standardized tools, these adults received 69% of recommended preventive care and 83% of care for cardiovascular risk factors in Switzerland, a country with universal coverage. Prevention indicator rates were lower for women and the elderly, and for cancer screening. Our study helps pave the way for targeted quality improvement initiatives and broader assessment of health care in Continental Europe.
Resumo:
Behavioural variation in the South American malaria vector Anopheles darlingi is described. At the centre of its distribution, in forest areas close to the city of Manaus, Brazil, it is primarily exophagic and exophilic. Mosquitoes from this area are chromosomally diverse. Towards the northern edge of its distribution (in Guyana and Venezuela) it is more endophagic and less diverse chromosomally. Similarly in the south (in the state of Minas Gerais) it is less polymorphic. In this area, however, it is primarily zoophilic and exophagic. Evidence is presented that female wing size may vary between populations. The possibility that this widely distributed species may be a complex could have important implications for future malaria control schemes.
Resumo:
An in vitro model of adult dorsal root ganglion neurons infection by rabies virus is described. Viral marked neurotropism is observed, and the percentage and the degree of infection of the neurons is higher than in non neuronal cells, even if neurons are the minority of the cells in the culture. The neuritic tree is also heavily infected by the virus.
Resumo:
Background Entomopathogenic nematodes (EPNs) are tiny parasitic worms that parasitize insects, in which they reproduce. Their foraging behavior has been subject to numerous studies, most of which have proposed that, at short distances, EPNs use chemicals that are emitted directly from the host as host location cues. Carbon dioxide (CO2) in particular has been implicated as an important cue. Recent evidence shows that at longer distances several EPNs take advantage of volatiles that are specifically emitted by roots in response to insect attack. Studies that have revealed these plant-mediated interactions among three trophic levels have been met with some disbelief. Scope This review aims to take away this skepticism by summarizing the evidence for a role of root volatiles as foraging cues for EPNs. To reinforce our argument, we conducted olfactometer assays in which we directly compared the attraction of an EPN species to CO2 and two typical inducible root volatiles. Conclusions The combination of the ubiquitous gas and a more specific root volatile was found to be considerably more attractive than one of the two alone. Hence, future studies on EPN foraging behavior should take into account that CO2 and plant volatiles may work in synergy as attractants for EPNs. Recent research efforts also reveal prospects of exploiting plant-produced signals to improve the biological control of insect pests in the rhizosphere.
Resumo:
Soil acidification is a major agricultural problem that negatively affects crop yield. Root systems counteract detrimental passive proton influx from acidic soil through increased proton pumping into the apoplast, which is presumably also required for cell elongation and stimulated by auxin. Here, we found an unexpected impact of extracellular pH on auxin activity and cell proliferation rate in the root meristem of two Arabidopsis mutants with impaired auxin perception, axr3 and brx. Surprisingly, neutral to slightly alkaline media rescued their severely reduced root (meristem) growth by stimulating auxin signaling, independent of auxin uptake. The finding that proton pumps are hyperactive in brx roots could explain this phenomenon and is consistent with more robust growth and increased fitness of brx mutants on overly acidic media or soil. Interestingly, the original brx allele was isolated from a natural stock center accession collected from acidic soil. Our discovery of a novel brx allele in accessions recently collected from another acidic sampling site demonstrates the existence of independently maintained brx loss-of-function alleles in nature and supports the notion that they are advantageous in acidic soil pH conditions, a finding that might be exploited for crop breeding.
Resumo:
We use historical data that cover more than one century on real GDP for industrial countries and employ the Pesaran panel unit root test that allows for cross-sectional dependence to test for a unit root on real GDP. We find strong evidence against the unit root null. Our results are robust to the chosen group of countries and the sample period. Key words: real GDP stationarity, cross-sectional dependence, CIPS test. JEL Classification: C23, E32
Resumo:
The tips of intact maize (cv. LG 11) roots, maintained vertically, were pretreated with a droplet of buffer solution or a bead of anion exchange resin, both containing [214-C]abscisic acid (ABA). A significant basipetal ABA movement was observed and two metabolites of ABA (possibly phaseic acid and dihydrophaseic acid) were found. ABA pretreatment enhanced the gravireaction of 10 mm apical root segments kept both in the dark and in the light. The possibility that ABA could be one of the endogenous growth inhibitors produced or released by the cap cells is discussed.
Resumo:
InterPro, an integrated documentation resource of protein families, domains and functional sites, was created in 1999 as a means of amalgamating the major protein signature databases into one comprehensive resource. PROSITE, Pfam, PRINTS, ProDom, SMART and TIGRFAMs have been manually integrated and curated and are available in InterPro for text- and sequence-based searching. The results are provided in a single format that rationalises the results that would be obtained by searching the member databases individually. The latest release of InterPro contains 5629 entries describing 4280 families, 1239 domains, 95 repeats and 15 post-translational modifications. Currently, the combined signatures in InterPro cover more than 74% of all proteins in SWISS-PROT and TrEMBL, an increase of nearly 15% since the inception of InterPro. New features of the database include improved searching capabilities and enhanced graphical user interfaces for visualisation of the data. The database is available via a webserver (http://www.ebi.ac.uk/interpro) and anonymous FTP (ftp://ftp.ebi.ac.uk/pub/databases/interpro).
Resumo:
Microtubule-associated proteins (MAPs) are essential components necessary for the early growth process of axons and dendrites, and for the structural organization within cells. Both MAP2 and MAP5 are involved in these events, MAP2 occupying a role predominantly in dendrites, and MAP5 being involved in both axonal and dendritic growth. In the chick dorsal root ganglia, pseudo-unipolar sensory neurons have a T-shaped axon and are devoid of any dendrites. Therefore, they offer an ideal model to study the differential expression of MAPs during DRG development, specifically during axonal growth. In this study we have analyzed the expression and localization of MAP2 and MAP5 isoforms during chick dorsal root ganglia development in vivo, and in cell culture. In DRG, both MAPs appeared as early as E5. MAP2 consists of the 3 isoforms MAP2a, b and c. On blots, no MAP2a could be found at any stage. MAP2b increased between E6 and E10 and thereafter diminished slowly in concentration, while MAP2c was found between stages E6 and E10 in DRG. By immunocytochemistry, MAP2 isoforms were mainly located in the neuronal perikarya and in the proximal portion of axons, but could not be localized to distal axonal segments, nor in sciatic nerve at any developmental stage. On blots, MAP5 was present in two isoforms, MAP5a and MAP5b. The concentration of MAP5a was highest at E6 and then decreased to a low level at E18. In contrast, MAP5b increased between E6 and E10, and rapidly decreased after E14. Only MAP5a was present in sciatic nerve up to E14. Immunocytochemistry revealed that MAP5 was localized mainly in axons, although neuronal perikarya exhibited a faint immunostaining. Strong staining of axons was observed between E10 and E14, at a time coincidental to a period of intense axonal outgrowth. After E14 immunolabeling of MAP5 decreased abruptly. In DRG culture, MAP2 was found exclusively in the neuronal perikarya and the most proximal neurite segment. In contrast, MAP5 was detected in the neuronal cell bodies and all along their neurites. In conclusion, MAP2 seems involved in the early establishment of the cytoarchitecture of cell bodies and the proximal axon segment of somatosensory neurons, while MAP5 is clearly related to axonal growth.
Resumo:
Using autoradiographic techniques carried out under precise conditions we previously demonstrated that both sensory neurons and peripheral glial cells in dorsal root ganglia (DRG) or sciatic nerve, possess specific [125I]-labeled T3 binding sites. Thyroid hormone receptors (TR) include several isoforms (TR alpha(1), TR alpha(2), TR beta(1), TR beta(2...)) The present study demonstrates that while sensory neurons and peripheral glial cells both possess functional TR, they express a differential expression of TR isoforms. Using a panel of antisera to specific for the TR alpha-common (alpha(1) and alpha(2)), TR alpha-1 or TR beta-1 isoforms, we detected TRs isoform localization at the cellular level during DRG and sciatic nerve development and regeneration. Immunohistochemical analysis revealed that during embryonic life, sensory neurons express TR alpha-common and TR beta-1 rather than TR alpha-1. The number of TR alpha-common and TR beta-1 positive neurons as well as the intensity of labeling increased during the first two postnatal weeks and remained more or less stable in adult life. TR alpha-1 immunoreactivity, which was undetectable in embryonic sensory neurons, became discreetly visible in neurons after birth. In developing DRG and sciatic nerves, Schwann cells exhibited TR alpha-common and TR alpha-1 rather than TR beta-1 immunolabeling. The appearance of TR alpha-common and alpha-1 isoform immunoreactivity in the sciatic nerve was restricted to a short period ranging from E17 up to two postnatal weeks. By comparing TR alpha-common and TR alpha-1 immunostaining we can deduce that Schwann cells primarily express TR alpha-1. Afterwards, in adult rat sciatic nerve TR alpha isoforms was no more detected. However transection of sciatic nerve caused a reexpression of TR alpha isoforms in degenerating nerve. The prevalence of TR alpha in Schwann cells in vivo was correlated with in vitro results. The differential expression of TR alpha and beta by sensory neurons and Schwann cells indicates that the feedback regulation of circulating thyroid hormone could occur by binding to either the alpha or beta TR isoforms. Moreover, the presence of multiple receptor isoforms in developing sensory neurons suggests that thyroid hormone uses multiple signaling pathways to regulate DRG and sciatic nerve development.
Resumo:
Seventy bacterial isolates from the rhizosphere of tomato were screened for antagonistic activity against the tomato foot and root rot-causing fungal pathogen Fusarium oxysporum f. sp. radicis-lycopersici. One isolate, strain PCL1391, appeared to be an efficient colonizer of tomato roots and an excellent biocontrol strain in an F. oxysporum/tomato test system. Strain PCL1391 was identified as Pseudomonas chlororaphis and further characterization showed that it produces a broad spectrum of antifungal factors (AFFs), including a hydrophobic compound, hydrogen cyanide, chitinase(s), and protease(s). Through mass spectrometry and nuclear magnetic resonance, the hydrophobic compound was identified as phenazine-1-carboxamide (PCN). We have studied the production and action of this AFF both in vitro and in vivo. Using a PCL1391 transposon mutant, with a lux reporter gene inserted in the phenazine biosynthetic operon (phz), we showed that this phenazine biosynthetic mutant was substantially decreased in both in vitro antifungal activity and biocontrol activity. Moreover, with the same mutant it was shown that the phz biosynthetic operon is expressed in the tomato rhizosphere. Comparison of the biocontrol activity of the PCN-producing strain PCL1391 with those of phenazine-1-carboxylic acid (PCA)-producing strains P. fluorescens 2-79 and P. aureofaciens 30-84 showed that the PCN-producing strain is able to suppress disease in the tomato/F. oxysporum system, whereas the PCA-producing strains are not. Comparison of in vitro antifungal activity of PCN and PCA showed that the antifungal activity of PCN was at least 10 times higher at neutral pH, suggesting that this may contribute to the superior biocontrol performance of strain PCL1391 in the tomato/F. oxysporum system.
Resumo:
Peptide signaling presumably occupies a central role in plant development, yet only few concrete examples of receptor-ligand pairs that act in the context of specific differentiation processes have been described. Here we report that second-site null mutations in the Arabidopsis leucine-rich repeat receptor-like kinase gene barely any meristem 3 (BAM3) perfectly suppress the postembryonic root meristem growth defect and the associated perturbed protophloem development of the brevis radix (brx) mutant. The roots of bam3 mutants specifically resist growth inhibition by the CLAVATA3/ENDOSPERM SURROUNDING REGION 45 (CLE45) peptide ligand. WT plants transformed with a construct for ectopic overexpression of CLE45 could not be recovered, with the exception of a single severely dwarfed and sterile plant that eventually died. By contrast, we obtained numerous transgenic bam3 mutants transformed with the same construct. These transgenic plants displayed a WT phenotype, however, supporting the notion that CLE45 is the likely BAM3 ligand. The results correlate with the observation that external CLE45 application represses protophloem differentiation in WT, but not in bam3 mutants. BAM3, BRX, and CLE45 are expressed in a similar spatiotemporal trend along the developing protophloem, up to the end of the transition zone. Induction of BAM3 expression upon CLE45 application, ectopic overexpression of BAM3 in brx root meristems, and laser ablation experiments suggest that intertwined regulatory activity of BRX, BAM3, and CLE45 could be involved in the proper transition of protophloem cells from proliferation to differentiation, thereby impinging on postembryonic growth capacity of the root meristem.