952 resultados para Robust epipolar-geometry estimation
Resumo:
Introduction Bioelectrical impedance analysis (BIA) is a useful field measure to estimate total body water (TBW). No prediction formulae have been developed or validated against a reference method in patients with pancreatic cancer. The aim of this study was to assess the agreement between three prediction equations for the estimation of TBW in cachectic patients with pancreatic cancer. Methods Resistance was measured at frequencies of 50 and 200 kHz in 18 outpatients (10 males and eight females, age 70.2 +/- 11.8 years) with pancreatic cancer from two tertiary Australian hospitals. Three published prediction formulae were used to calculate TBW - TBWs developed in surgical patients, TBWca-uw and TBWca-nw developed in underweight and normal weight patients with end-stage cancer. Results There was no significant difference in the TBW estimated by the three prediction equations - TBWs 32.9 +/- 8.3 L, TBWca-nw 36.3 +/- 7.4 L, TBWca-uw 34.6 +/- 7.6 L. At a population level, there is agreement between prediction of TBW in patients with pancreatic cancer estimated from the three equations. The best combination of low bias and narrow limits of agreement was observed when TBW was estimated from the equation developed in the underweight cancer patients relative to the normal weight cancer patients. When no established BIA prediction equation exists, practitioners should utilize an equation developed in a population with similar critical characteristics such as diagnosis, weight loss, body mass index and/or age. Conclusions Further research is required to determine the accuracy of the BIA prediction technique against a reference method in patients with pancreatic cancer.
Resumo:
This paper investigates the robustness of a range of short–term interest rate models. We examine the robustness of these models over different data sets, time periods, sampling frequencies, and estimation techniques. We examine a range of popular one–factor models that allow the conditional mean (drift) and conditional variance (diffusion) to be functions of the current short rate. We find that parameter estimates are highly sensitive to all of these factors in the eight countries that we examine. Since parameter estimates are not robust, these models should be used with caution in practice.
Resumo:
Blast fragmentation can have a significant impact on the profitability of a mine. An optimum run of mine (ROM) size distribution is required to maximise the performance of downstream processes. If this fragmentation size distribution can be modelled and controlled, the operation will have made a significant advancement towards improving its performance. Blast fragmentation modelling is an important step in Mine to Mill™ optimisation. It allows the estimation of blast fragmentation distributions for a number of different rock mass, blast geometry, and explosive parameters. These distributions can then be modelled in downstream mining and milling processes to determine the optimum blast design. When a blast hole is detonated rock breakage occurs in two different stress regions - compressive and tensile. In the-first region, compressive stress waves form a 'crushed zone' directly adjacent to the blast hole. The second region, termed the 'cracked zone', occurs outside the crush one. The widely used Kuz-Ram model does not recognise these two blast regions. In the Kuz-Ram model the mean fragment size from the blast is approximated and is then used to estimate the remaining size distribution. Experience has shown that this model predicts the coarse end reasonably accurately, but it can significantly underestimate the amount of fines generated. As part of the Australian Mineral Industries Research Association (AMIRA) P483A Mine to Mill™ project, the Two-Component Model (TCM) and Crush Zone Model (CZM), developed by the Julius Kruttschnitt Mineral Research Centre (JKMRC), were compared and evaluated to measured ROM fragmentation distributions. An important criteria for this comparison was the variation of model results from measured ROM in the-fine to intermediate section (1-100 mm) of the fragmentation curve. This region of the distribution is important for Mine to Mill™ optimisation. The comparison of modelled and Split ROM fragmentation distributions has been conducted in harder ores (UCS greater than 80 MPa). Further work involves modelling softer ores. The comparisons will be continued with future site surveys to increase confidence in the comparison of the CZM and TCM to Split results. Stochastic fragmentation modelling will then be conducted to take into account variation of input parameters. A window of possible fragmentation distributions can be compared to those obtained by Split . Following this work, an improved fragmentation model will be developed in response to these findings.
Resumo:
This article presents Monte Carlo techniques for estimating network reliability. For highly reliable networks, techniques based on graph evolution models provide very good performance. However, they are known to have significant simulation cost. An existing hybrid scheme (based on partitioning the time space) is available to speed up the simulations; however, there are difficulties with optimizing the important parameter associated with this scheme. To overcome these difficulties, a new hybrid scheme (based on partitioning the edge set) is proposed in this article. The proposed scheme shows orders of magnitude improvement of performance over the existing techniques in certain classes of network. It also provides reliability bounds with little overhead.
Resumo:
There has been a resurgence of interest in the mean trace length estimator of Pahl for window sampling of traces. The estimator has been dealt with by Mauldon and Zhang and Einstein in recent publications. The estimator is a very useful one in that it is non-parametric. However, despite some discussion regarding the statistical distribution of the estimator, none of the recent works or the original work by Pahl provide a rigorous basis for the determination a confidence interval for the estimator or a confidence region for the estimator and the corresponding estimator of trace spatial intensity in the sampling window. This paper shows, by consideration of a simplified version of the problem but without loss of generality, that the estimator is in fact the maximum likelihood estimator (MLE) and that it can be considered essentially unbiased. As the MLE, it possesses the least variance of all estimators and confidence intervals or regions should therefore be available through application of classical ML theory. It is shown that valid confidence intervals can in fact be determined. The results of the work and the calculations of the confidence intervals are illustrated by example. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
A number of authors concerned with the analysis of rock jointing have used the idea that the joint areal or diametral distribution can be linked to the trace length distribution through a theorem attributed to Crofton. This brief paper seeks to demonstrate why Crofton's theorem need not be used to link moments of the trace length distribution captured by scan line or areal mapping to the moments of the diametral distribution of joints represented as disks and that it is incorrect to do so. The valid relationships for areal or scan line mapping between all the moments of the trace length distribution and those of the joint size distribution for joints modeled as disks are recalled and compared with those that might be applied were Crofton's theorem assumed to apply. For areal mapping, the relationship is fortuitously correct but incorrect for scan line mapping.
Resumo:
Background : Femoral shaft fracture incidence increases in older adults and is associated with low-energy trauma. Apart from bone density, the distribution and size of bone contributes to its strength. Aim : To examine if bone geometry and density of the femoral mid-shaft in older adults differs by sex and race, we studied 197 White women, 225 Black women, 242 White men, and 148 Black men aged 70-79 years participating in the Health, Aging, and Body Composition study; a prospective cohort study in the USA. A secondary purpose of the study was to examine the association of site-specific muscle and fat to bone geometry and density. Subjects and methods : Subjects were community-dwelling and reported no difficulty walking one-quarter of a mile or climbing stairs. Mid-femoral volumetric bone mineral density (vBMD, mg cm -3 ), total area (TA), cortical area (CA), medullary area (MA), cross-sectional moments of inertia (CSMI: I x , I y , J ), and muscle and fat areas (cm 2 ) were determined by computed tomography (CT; GE CT-9800, 10 mm slice thickness). Results : vBMD was greater in men than women with no difference by race ( p < 0.001). Bone areas and area moments of inertia were also greater in men than women ( p < 0.001), with Black women having higher values than White women for TA and CA. Standardizing geometric parameters for body size differences by dividing by powers of femur length did not negate the sex difference for TA and MA. Significant differences ( p < 0.05) among the four groups also remained for I x and J . Mid-thigh muscle area was an independent contributor to TA in all groups (Std beta = 0.181-0.351, p < 0.05) as well as CA in women (Std beta = 0.246-0.254, p < 0.01) and CSMI in White women (Std beta = 0.175-0.185, p < 0.05). Further, muscle area was a significant contributor to vBMD in Black women. Conclusion : These results indicate that bone geometry and density of the femoral diaphysis differs primarily by sex, rather than race, in older well-functioning adults. In addition, site-specific muscle area appears to have a potential contributory role to bone geometry parameters, especially in women.
Resumo:
A literatura internacional que analisa os fatores impactantes das transações com partes relacionadas concentra-se no Reino Unido, nos EUA e no continente asiático, sendo o Brasil um ambiente pouco investigado. Esta pesquisa tem por objetivo investigar tanto os fatores impactantes dos contratos com partes relacionadas, quanto o impacto dessas transações no desempenho das empresas brasileiras. Estudos recentes que investigaram as determinantes das transações com partes relacionadas (TPRs), assim como seus impactos no desempenho das empresas, levaram em consideração as vertentes apresentadas por Gordon, Henry e Palia (2004): (a) de conflitos de interesses, as quais apoiam a visão de que as TPRs são danosas para os acionistas minoritários, implicando expropriação da riqueza deles, por parte dos controladores (acionistas majoritários); e (b) transações eficientes que podem ser benéficas às empresas, atendendo, desse modo, aos objetivos econômicos subjacentes delas. Esta pesquisa apoia-se na vertente de conflito de interesses, com base na teoria da agência e no fato de que o cenário brasileiro apresenta ter como característica uma estrutura de propriedade concentrada e ser um país emergente com ambiente legal caracterizado pela baixa proteção aos acionistas minoritários. Para operacionalizar a pesquisa, utilizou-se uma amostra inicial composta de 70 empresas com ações listadas na BM&FBovespa, observando o período de 2010 a 2012. Os contratos relacionados foram identificados e quantificados de duas formas, de acordo com a metodologia aplicada por Kohlbeck e Mayhew (2004; 2010) e Silveira, Prado e Sasso (2009). Como principais determinantes foram investigadas proxies para captar os efeitos dos mecanismos de governança corporativa e ambiente legal, do desempenho das empresas, dos desvios entre direitos sobre controle e direitos sobre fluxo de caixa e do excesso de remuneração executiva. Também foram adicionadas variáveis de controle para isolar as características intrínsecas das firmas. Nas análises econométricas foram estimados os modelos pelos métodos de Poisson, corte transversal agrupado (Pooled-OLS) e logit. A estimação foi feita pelo método dos mínimos quadrados ordinários (MQO), e para aumentar a robustez das estimativas econométricas, foram utilizadas variáveis instrumentais estimadas pelo método dos momentos generalizados (MMG). As evidências indicam que os fatores investigados impactam diferentemente as diversas medidas de TPRs das empresas analisadas. Verificou-se que os contratos relacionados, em geral, são danosos às empresas, impactando negativamente o desempenho delas, desempenho este que é aumentado pela presença de mecanismos eficazes de governança corporativa. Os resultados do impacto das medidas de governança corporativa e das características intrínsecas das firmas no desempenho das empresas são robustos à presença de endogeneidade com base nas regressões com variáveis instrumentais.
Resumo:
The aim of this paper was to estimate the return on investment in QMS (quality management systems) certification undertaken in Portuguese firms, according to the ISO 9000 series. A total of 426 certified Portuguese firms were surveyed. The response rate was 61.03 percent. The different payback periods were validated through statistical analysis and the relationship between expected and perceived payback periods was discussed. This study suggests that a firm’s sector of activity, size and degree of internationalization are related to the length of the investment in QMS certification recovery period. Furthermore, our findings suggest, that the time taken to obtain the certification is not directly related to the economic component of the certification. The majority of Portuguese firms (58.9%) took up to three years to recoup their investment and 35.5% of companies said they had not yet recovered the initial investment made. The recoup of investment was measured by the increase in the number of customers and consequent volume of deliveries, improved profitability and productivity of the company, improvement of competitive position and performance (cost savings), reduction in the number of external complaints and internal defects/scrap, achievement of some important clientele, among others. We compared our work to similar studies undertaken in other countries. This paper provides a contribution to the research related to the return on investment for costs related to the certification QMS according to ISO 9000. This paper provides a valuable contribution to the field and is one of the first studies to undertake this type of analysis in Portugal.
Resumo:
In this paper, we present a method for estimating local thickness distribution in nite element models, applied to injection molded and cast engineering parts. This method features considerable improved performance compared to two previously proposed approaches, and has been validated against thickness measured by di erent human operators. We also demonstrate that the use of this method for assigning a distribution of local thickness in FEM crash simulations results in a much more accurate prediction of the real part performance, thus increasing the bene ts of computer simulations in engineering design by enabling zero-prototyping and thus reducing product development costs. The simulation results have been compared to experimental tests, evidencing the advantage of the proposed method. Thus, the proposed approach to consider local thickness distribution in FEM crash simulations has high potential on the product development process of complex and highly demanding injection molded and casted parts and is currently being used by Ford Motor Company.
Resumo:
Minimally invasive cardiovascular interventions guided by multiple imaging modalities are rapidly gaining clinical acceptance for the treatment of several cardiovascular diseases. These images are typically fused with richly detailed pre-operative scans through registration techniques, enhancing the intra-operative clinical data and easing the image-guided procedures. Nonetheless, rigid models have been used to align the different modalities, not taking into account the anatomical variations of the cardiac muscle throughout the cardiac cycle. In the current study, we present a novel strategy to compensate the beat-to-beat physiological adaptation of the myocardium. Hereto, we intend to prove that a complete myocardial motion field can be quickly recovered from the displacement field at the myocardial boundaries, therefore being an efficient strategy to locally deform the cardiac muscle. We address this hypothesis by comparing three different strategies to recover a dense myocardial motion field from a sparse one, namely, a diffusion-based approach, thin-plate splines, and multiquadric radial basis functions. Two experimental setups were used to validate the proposed strategy. First, an in silico validation was carried out on synthetic motion fields obtained from two realistic simulated ultrasound sequences. Then, 45 mid-ventricular 2D sequences of cine magnetic resonance imaging were processed to further evaluate the different approaches. The results showed that accurate boundary tracking combined with dense myocardial recovery via interpolation/ diffusion is a potentially viable solution to speed up dense myocardial motion field estimation and, consequently, to deform/compensate the myocardial wall throughout the cardiac cycle. Copyright © 2015 John Wiley & Sons, Ltd.
Resumo:
The success of dental implant-supported prosthesis is directly linked to the accuracy obtained during implant’s pose estimation (position and orientation). Although traditional impression techniques and recent digital acquisition methods are acceptably accurate, a simultaneously fast, accurate and operator-independent methodology is still lacking. Hereto, an image-based framework is proposed to estimate the patient-specific implant’s pose using cone-beam computed tomography (CBCT) and prior knowledge of implanted model. The pose estimation is accomplished in a threestep approach: (1) a region-of-interest is extracted from the CBCT data using 2 operator-defined points at the implant’s main axis; (2) a simulated CBCT volume of the known implanted model is generated through Feldkamp-Davis-Kress reconstruction and coarsely aligned to the defined axis; and (3) a voxel-based rigid registration is performed to optimally align both patient and simulated CBCT data, extracting the implant’s pose from the optimal transformation. Three experiments were performed to evaluate the framework: (1) an in silico study using 48 implants distributed through 12 tridimensional synthetic mandibular models; (2) an in vitro study using an artificial mandible with 2 dental implants acquired with an i-CAT system; and (3) two clinical case studies. The results shown positional errors of 67±34μm and 108μm, and angular misfits of 0.15±0.08º and 1.4º, for experiment 1 and 2, respectively. Moreover, in experiment 3, visual assessment of clinical data results shown a coherent alignment of the reference implant. Overall, a novel image-based framework for implants’ pose estimation from CBCT data was proposed, showing accurate results in agreement with dental prosthesis modelling requirements.