928 resultados para Robust Multivariable Controller Design


Relevância:

30.00% 30.00%

Publicador:

Resumo:

FBGs are excellent strain sensors, because of its low size and multiplexing capability. Tens to hundred of sensors may be embedded into a structure, as it has already been demonstrated. Nevertheless, they only afford strain measurements at local points, so unless the damage affects the strain readings in a distinguishable manner, damage will go undetected. This paper show the experimental results obtained on the wing of a UAV, instrumented with 32 FBGs, before and after small damages were introduced. The PCA algorithm was able to distinguish the damage cases, even for small cracks. Principal Component Analysis (PCA) is a technique of multivariable analysis to reduce a complex data set to a lower dimension and reveal some hidden patterns that underlie.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radar technologies have been developed to improve the efficiency when detecting targets. Radar is a system composed by several devices connected and working together. Depending on the type of radar, the improvements are focused on different functionalities of the radar. One of the most important devices composing a radar is the antenna, that sends the radio-frequency signal to the space in order to detect targets. This project is focused on a specific type of radar called phased array radar. This type of radar is characterized by its antenna, which consist on a linear array of radiating elements, in this particular case, eight dipoles working at the frequency band S. The main advantage introduced by the phased array antenna is that using the fundamentals of arrays, the directivity of the antenna can change by shifting the phase of the signal at the input of each radiating element. This can be done using phase shifters. Phase shifter consists on a device which produces a phase shift in the radio-frequency input signal depending on a control DC voltage. Using a phased array antenna allows changing the directivity of the antenna without a mechanical rotating system. The objective of this project is to design the feed network and the bias network of the phased antenna. The feed network consists on a parallel-fed network composed by power dividers that sends the radio-frequency signal from the source to each radiating element of the antenna. The bias network consists on a system that generates the control DC voltages supplied to the phase shifters in order to change the directivity. The architecture of the bias network is composed by a software, implemented in Matlab and run in a laptop which is connected to a micro-controller by a serial communication port. The software calculates the control DC voltages needed to obtain a determined directivity or scan angle. These values are sent by the serial communication port to the micro-controller as data. Then the micro-controller generates the desired control DC voltages and supplies them to the phase shifters. In this project two solutions for bias network are designed. Each one is tested and final conclusions are obtained to determine the advantages and disadvantages. Finally a graphic user interface is developed in order to make the system easy to use. RESUMEN. Las tecnologías empleadas por lo dispositivos radar se han ido desarrollando para mejorar su eficiencia y usabilidad. Un radar es un sistema formado por varios subsistemas conectados entre sí. Por lo que dependiendo del tipo de radar las mejoras se centran en los subsistemas correspondientes. Uno de los elementos más importantes de un radar es la antena. Esta se emplea para enviar la señal de radiofrecuencia al espacio y así poder detectar los posibles obstáculos del entorno. Este proyecto se centra en un tipo específico de radar llamado phased array radar. Este tipo de radar se caracteriza por la antena que es un array de antenas, en concreto para este proyecto se trata de un array lineal de ocho dipolos en la banda de frequencia S. El uso de una antena de tipo phased array supone una ventaja importante. Empleando los fundamentos de radiación aplicado a array de antenas se obtiene que la directividad de la antena puede ser modificada. Esto se consigue aplicando distintos desfasajes a la señal de radiofrecuencia que alimenta a cada elemento del array. Para aplicar los desfasajes se emplea un desplazador de fase, este dispositivo aplica una diferencia de fase a su salida con respecto a la señal de entrada dependiendo de una tensión continua de control. Por tanto el empleo de una antena de tipo phased array supone una gran ventaja puesto que no se necesita un sistema de rotación para cambiar la directividad de la antena. El objetivo principal del proyecto consiste en el diseño de la red de alimentación y la red de polarización de la antena de tipo phased array. La red de alimentación consiste en un circuito pasivo que permite alimentar a cada elemento del array con la misma cantidad de señal. Dicha red estará formada por divisores de potencia pasivos y su configuración será en paralelo. Por otro lado la red de polarización consiste en el diseño de un sistema automático que permite cambiar la directividad de la antena. Este sistema consiste en un programa en Matlab que es ejecutado en un ordenador conectado a un micro-controlador mediante una comunicación serie. El funcionamiento se basa en calcular las tensiones continuas de control, que necesitan los desplazadores de fase, mediante un programa en Matlab y enviarlos como datos al micro-controlador. Dicho micro-controlador genera las tensiones de control deseadas y las proporciona a cada desplazador de fase, obteniendo así la directividad deseada. Debido al amplio abanico de posibilidades, se obtienen dos soluciones que son sometidas a pruebas. Se obtienen las ventajas y desventajas de cada una. Finalmente se implementa una interfaz gráfica de usuario con el objetivo de hacer dicho sistema manejable y entendible para cualquier usuario.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Los sistemas técnicos son cada vez más complejos, incorporan funciones más avanzadas, están más integrados con otros sistemas y trabajan en entornos menos controlados. Todo esto supone unas condiciones más exigentes y con mayor incertidumbre para los sistemas de control, a los que además se demanda un comportamiento más autónomo y fiable. La adaptabilidad de manera autónoma es un reto para tecnologías de control actualmente. El proyecto de investigación ASys propone abordarlo trasladando la responsabilidad de la capacidad de adaptación del sistema de los ingenieros en tiempo de diseño al propio sistema en operación. Esta tesis pretende avanzar en la formulación y materialización técnica de los principios de ASys de cognición y auto-consciencia basadas en modelos y autogestión de los sistemas en tiempo de operación para una autonomía robusta. Para ello el trabajo se ha centrado en la capacidad de auto-conciencia, inspirada en los sistemas biológicos, y se ha explorado la posibilidad de integrarla en la arquitectura de los sistemas de control. Además de la auto-consciencia, se han explorado otros temas relevantes: modelado funcional, modelado de software, tecnología de los patrones, tecnología de componentes, tolerancia a fallos. Se ha analizado el estado de la técnica en los ámbitos pertinentes para las cuestiones de la auto-consciencia y la adaptabilidad en sistemas técnicos: arquitecturas cognitivas, control tolerante a fallos, y arquitecturas software dinámicas y computación autonómica. El marco teórico de ASys existente de sistemas autónomos cognitivos ha sido adaptado para servir de base para este análisis de autoconsciencia y adaptación y para dar sustento conceptual al posterior desarrollo de la solución. La tesis propone una solución general de diseño para la construcción de sistemas autónomos auto-conscientes. La idea central es la integración de un meta-controlador en la arquitectura de control del sistema autónomo, capaz de percibir la estado funcional del sistema de control y, si es necesario, reconfigurarlo en tiempo de operación. Esta solución de metacontrol se ha formalizado en cuatro patrones de diseño: i) el Patrón Metacontrol, que define la integración de un subsistema de metacontrol, responsable de controlar al propio sistema de control a través de la interfaz proporcionada por su plataforma de componentes, ii) el patrón Bucle de Control Epistémico, que define un bucle de control cognitivo basado en el modelos y que se puede aplicar al diseño del metacontrol, iii) el patrón de Reflexión basada en Modelo Profundo propone una solución para construir el modelo ejecutable utilizado por el meta-controlador mediante una transformación de modelo a modelo a partir del modelo de ingeniería del sistema, y, finalmente, iv) el Patrón Metacontrol Funcional, que estructura el meta-controlador en dos bucles, uno para el control de la configuración de los componentes del sistema de control, y otro sobre éste, controlando las funciones que realiza dicha configuración de componentes; de esta manera las consideraciones funcionales y estructurales se desacoplan. La Arquitectura OM y el metamodelo TOMASys son las piezas centrales del marco arquitectónico desarrollado para materializar la solución compuesta de los patrones anteriores. El metamodelo TOMASys ha sido desarrollado para la representación de la estructura y su relación con los requisitos funcionales de cualquier sistema autónomo. La Arquitectura OM es un patrón de referencia para la construcción de una metacontrolador integrando los patrones de diseño propuestos. Este meta-controlador se puede integrar en la arquitectura de cualquier sistema control basado en componentes. El elemento clave de su funcionamiento es un modelo TOMASys del sistema decontrol, que el meta-controlador usa para monitorizarlo y calcular las acciones de reconfiguración necesarias para adaptarlo a las circunstancias en cada momento. Un proceso de ingeniería, complementado con otros recursos, ha sido elaborado para guiar la aplicación del marco arquitectónico OM. Dicho Proceso de Ingeniería OM define la metodología a seguir para construir el subsistema de metacontrol para un sistema autónomo a partir del modelo funcional del mismo. La librería OMJava proporciona una implementación del meta-controlador OM que se puede integrar en el control de cualquier sistema autónomo, independientemente del dominio de la aplicación o de su tecnología de implementación. Para concluir, la solución completa ha sido validada con el desarrollo de un robot móvil autónomo que incorpora un meta-controlador con la Arquitectura OM. Las propiedades de auto-consciencia y adaptación proporcionadas por el meta-controlador han sido validadas en diferentes escenarios de operación del robot, en los que el sistema era capaz de sobreponerse a fallos en el sistema de control mediante reconfiguraciones orquestadas por el metacontrolador. ABSTRACT Technical systems are becoming more complex, they incorporate more advanced functionalities, they are more integrated with other systems and they are deployed in less controlled environments. All this supposes a more demanding and uncertain scenario for control systems, which are also required to be more autonomous and dependable. Autonomous adaptivity is a current challenge for extant control technologies. The ASys research project proposes to address it by moving the responsibility for adaptivity from the engineers at design time to the system at run-time. This thesis has intended to advance in the formulation and technical reification of ASys principles of model-based self-cognition and having systems self-handle at runtime for robust autonomy. For that it has focused on the biologically inspired capability of self-awareness, and explored the possibilities to embed it into the very architecture of control systems. Besides self-awareness, other themes related to the envisioned solution have been explored: functional modeling, software modeling, patterns technology, components technology, fault tolerance. The state of the art in fields relevant for the issues of self-awareness and adaptivity has been analysed: cognitive architectures, fault-tolerant control, and software architectural reflection and autonomic computing. The extant and evolving ASys Theoretical Framework for cognitive autonomous systems has been adapted to provide a basement for this selfhood-centred analysis and to conceptually support the subsequent development of our solution. The thesis proposes a general design solution for building self-aware autonomous systems. Its central idea is the integration of a metacontroller in the control architecture of the autonomous system, capable of perceiving the functional state of the control system and reconfiguring it if necessary at run-time. This metacontrol solution has been formalised into four design patterns: i) the Metacontrol Pattern, which defines the integration of a metacontrol subsystem, controlling the domain control system through an interface provided by its implementation component platform, ii) the Epistemic Control Loop pattern, which defines a modelbased cognitive control loop that can be applied to the design of such a metacontroller, iii) the Deep Model Reflection pattern proposes a solution to produce the online executable model used by the metacontroller by model-to-model transformation from the engineering model, and, finally, iv) the Functional Metacontrol pattern, which proposes to structure the metacontroller in two loops, one for controlling the configuration of components of the controller, and another one on top of the former, controlling the functions being realised by that configuration; this way the functional and structural concerns become decoupled. The OM Architecture and the TOMASys metamodel are the core pieces of the architectural framework developed to reify this patterned solution. The TOMASys metamodel has been developed for representing the structure and its relation to the functional requirements of any autonomous system. The OM architecture is a blueprint for building a metacontroller according to the patterns. This metacontroller can be integrated on top of any component-based control architecture. At the core of its operation lies a TOMASys model of the control system. An engineering process and accompanying assets have been constructed to complete and exploit the architectural framework. The OM Engineering Process defines the process to follow to develop the metacontrol subsystem from the functional model of the controller of the autonomous system. The OMJava library provides a domain and application-independent implementation of an OM Metacontroller than can be used in the implementation phase of OMEP. Finally, the complete solution has been validated in the development of an autonomous mobile robot that incorporates an OM metacontroller. The functional selfawareness and adaptivity properties achieved thanks to the metacontrol system have been validated in different scenarios. In these scenarios the robot was able to overcome failures in the control system thanks to reconfigurations performed by the metacontroller.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: This study assessed the efficacy of a closed-loop (CL) system consisting of a predictive rule-based algorithm (pRBA) on achieving nocturnal and postprandial normoglycemia in patients with type 1 diabetes mellitus (T1DM). The algorithm is personalized for each patient’s data using two different strategies to control nocturnal and postprandial periods. Research Design and Methods: We performed a randomized crossover clinical study in which 10 T1DM patients treated with continuous subcutaneous insulin infusion (CSII) spent two nonconsecutive nights in the research facility: one with their usual CSII pattern (open-loop [OL]) and one controlled by the pRBA (CL). The CL period lasted from 10 p.m. to 10 a.m., including overnight control, and control of breakfast. Venous samples for blood glucose (BG) measurement were collected every 20 min. Results: Time spent in normoglycemia (BG, 3.9–8.0 mmol/L) during the nocturnal period (12 a.m.–8 a.m.), expressed as median (interquartile range), increased from 66.6% (8.3–75%) with OL to 95.8% (73–100%) using the CL algorithm (P<0.05). Median time in hypoglycemia (BG, <3.9 mmol/L) was reduced from 4.2% (0–21%) in the OL night to 0.0% (0.0–0.0%) in the CL night (P<0.05). Nine hypoglycemic events (<3.9 mmol/L) were recorded with OL compared with one using CL. The postprandial glycemic excursion was not lower when the CL system was used in comparison with conventional preprandial bolus: time in target (3.9–10.0 mmol/L) 58.3% (29.1–87.5%) versus 50.0% (50–100%). Conclusions: A highly precise personalized pRBA obtains nocturnal normoglycemia, without significant hypoglycemia, in T1DM patients. There appears to be no clear benefit of CL over prandial bolus on the postprandial glycemia

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ripple-based controls can strongly reduce the required output capacitance in PowerSoC converter thanks to a very fast dynamic response. Unfortunately, these controls are prone to sub-harmonic oscillations and several parameters affect the stability of these systems. This paper derives and validates a simulation-based modeling and stability analysis of a closed-loop V 2Ic control applied to a 5 MHz Buck converter using discrete modeling and Floquet theory to predict stability. This allows the derivation of sensitivity analysis to design robust systems. The work is extended to different V 2 architectures using the same methodology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En el campo de la fusión nuclear y desarrollándose en paralelo a ITER (International Thermonuclear Experimental Reactor), el proyecto IFMIF (International Fusion Material Irradiation Facility) se enmarca dentro de las actividades complementarias encaminadas a solucionar las barreras tecnológicas que aún plantea la fusión. En concreto IFMIF es una instalación de irradiación cuya misión es caracterizar materiales resistentes a condiciones extremas como las esperadas en los futuros reactores de fusión como DEMO (DEMOnstration power plant). Consiste de dos aceleradores de deuterones que proporcionan un haz de 125 mA y 40 MeV cada uno, que al colisionar con un blanco de litio producen un flujo neutrónico intenso (1017 neutrones/s) con un espectro similar al de los neutrones de fusión [1], [2]. Dicho flujo neutrónico es empleado para irradiar los diferentes materiales candidatos a ser empleados en reactores de fusión, y las muestras son posteriormente examinadas en la llamada instalación de post-irradiación. Como primer paso en tan ambicioso proyecto, una fase de validación y diseño llamada IFMIFEVEDA (Engineering Validation and Engineering Design Activities) se encuentra actualmente en desarrollo. Una de las actividades contempladas en esta fase es la construcción y operación de una acelarador prototipo llamado LIPAc (Linear IFMIF Prototype Accelerator). Se trata de un acelerador de deuterones de alta intensidad idéntico a la parte de baja energía de los aceleradores de IFMIF. Los componentes del LIPAc, que será instalado en Japón, son suministrados por diferentes países europeos. El acelerador proporcionará un haz continuo de deuterones de 9 MeV con una potencia de 1.125 MW que tras ser caracterizado con diversos instrumentos deberá pararse de forma segura. Para ello se requiere un sistema denominado bloque de parada (Beam Dump en inglés) que absorba la energía del haz y la transfiera a un sumidero de calor. España tiene el compromiso de suministrar este componente y CIEMAT (Centro de Investigaciones Energéticas Medioambientales y Tecnológicas) es responsable de dicha tarea. La pieza central del bloque de parada, donde se para el haz de iones, es un cono de cobre con un ángulo de 3.5o, 2.5 m de longitud y 5 mm de espesor. Dicha pieza está refrigerada por agua que fluye en su superficie externa por el canal que se forma entre el cono de cobre y otra pieza concéntrica con éste. Este es el marco en que se desarrolla la presente tesis, cuyo objeto es el diseño del sistema de refrigeración del bloque de parada del LIPAc. El diseño se ha realizado utilizando un modelo simplificado unidimensional. Se han obtenido los parámetros del agua (presión, caudal, pérdida de carga) y la geometría requerida en el canal de refrigeración (anchura, rugosidad) para garantizar la correcta refrigeración del bloque de parada. Se ha comprobado que el diseño permite variaciones del haz respecto a la situación nominal siendo el flujo crítico calorífico al menos 2 veces superior al nominal. Se han realizado asimismo simulaciones fluidodinámicas 3D con ANSYS-CFX en aquellas zonas del canal de refrigeración que lo requieren. El bloque de parada se activará como consecuencia de la interacción del haz de partículas lo que impide cualquier cambio o reparación una vez comenzada la operación del acelerador. Por ello el diseño ha de ser muy robusto y todas las hipótesis utilizadas en la realización de éste deben ser cuidadosamente comprobadas. Gran parte del esfuerzo de la tesis se centra en la estimación del coeficiente de transferencia de calor que es determinante en los resultados obtenidos, y que se emplea además como condición de contorno en los cálculos mecánicos. Para ello por un lado se han buscado correlaciones cuyo rango de aplicabilidad sea adecuado para las condiciones del bloque de parada (canal anular, diferencias de temperatura agua-pared de decenas de grados). En un segundo paso se han comparado los coeficientes de película obtenidos a partir de la correlación seleccionada (Petukhov-Gnielinski) con los que se deducen de simulaciones fluidodinámicas, obteniendo resultados satisfactorios. Por último se ha realizado una validación experimental utilizando un prototipo y un circuito hidráulico que proporciona un flujo de agua con los parámetros requeridos en el bloque de parada. Tras varios intentos y mejoras en el experimento se han obtenido los coeficientes de película para distintos caudales y potencias de calentamiento. Teniendo en cuenta la incertidumbre de las medidas, los valores experimentales concuerdan razonablemente bien (en el rango de 15%) con los deducidos de las correlaciones. Por motivos radiológicos es necesario controlar la calidad del agua de refrigeración y minimizar la corrosión del cobre. Tras un estudio bibliográfico se identificaron los parámetros del agua más adecuados (conductividad, pH y concentración de oxígeno disuelto). Como parte de la tesis se ha realizado asimismo un estudio de la corrosión del circuito de refrigeración del bloque de parada con el doble fin de determinar si puede poner en riesgo la integridad del componente, y de obtener una estimación de la velocidad de corrosión para dimensionar el sistema de purificación del agua. Se ha utilizado el código TRACT (TRansport and ACTivation code) adaptándalo al caso del bloque de parada, para lo cual se trabajó con el responsable (Panos Karditsas) del código en Culham (UKAEA). Los resultados confirman que la corrosión del cobre en las condiciones seleccionadas no supone un problema. La Tesis se encuentra estructurada de la siguiente manera: En el primer capítulo se realiza una introducción de los proyectos IFMIF y LIPAc dentro de los cuales se enmarca esta Tesis. Además se describe el bloque de parada, siendo el diseño del sistema de rerigeración de éste el principal objetivo de la Tesis. En el segundo y tercer capítulo se realiza un resumen de la base teórica así como de las diferentes herramientas empleadas en el diseño del sistema de refrigeración. El capítulo cuarto presenta los resultados del relativos al sistema de refrigeración. Tanto los obtenidos del estudio unidimensional, como los obtenidos de las simulaciones fluidodinámicas 3D mediante el empleo del código ANSYS-CFX. En el quinto capítulo se presentan los resultados referentes al análisis de corrosión del circuito de refrigeración del bloque de parada. El capítulo seis se centra en la descripción del montaje experimental para la obtención de los valores de pérdida de carga y coeficiente de transferencia del calor. Asimismo se presentan los resultados obtenidos en dichos experimentos. Finalmente encontramos un capítulo de apéndices en el que se describen una serie de experimentos llevados a cabo como pasos intermedios en la obtención del resultado experimental del coeficiente de película. También se presenta el código informático empleado para el análisis unidimensional del sistema de refrigeración del bloque de parada llamado CHICA (Cooling and Heating Interaction and Corrosion Analysis). ABSTRACT In the nuclear fusion field running in parallel to ITER (International Thermonuclear Experimental Reactor) as one of the complementary activities headed towards solving the technological barriers, IFMIF (International Fusion Material Irradiation Facility) project aims to provide an irradiation facility to qualify advanced materials resistant to extreme conditions like the ones expected in future fusion reactors like DEMO (DEMOnstration Power Plant). IFMIF consists of two constant wave deuteron accelerators delivering a 125 mA and 40 MeV beam each that will collide on a lithium target producing an intense neutron fluence (1017 neutrons/s) with a similar spectra to that of fusion neutrons [1], [2]. This neutron flux is employed to irradiate the different material candidates to be employed in the future fusion reactors, and the samples examined after irradiation at the so called post-irradiative facilities. As a first step in such an ambitious project, an engineering validation and engineering design activity phase called IFMIF-EVEDA (Engineering Validation and Engineering Design Activities) is presently going on. One of the activities consists on the construction and operation of an accelerator prototype named LIPAc (Linear IFMIF Prototype Accelerator). It is a high intensity deuteron accelerator identical to the low energy part of the IFMIF accelerators. The LIPAc components, which will be installed in Japan, are delivered by different european countries. The accelerator supplies a 9 MeV constant wave beam of deuterons with a power of 1.125 MW, which after being characterized by different instruments has to be stopped safely. For such task a beam dump to absorb the beam energy and take it to a heat sink is needed. Spain has the compromise of delivering such device and CIEMAT (Centro de Investigaciones Energéticas Medioambientales y Tecnológicas) is responsible for such task. The central piece of the beam dump, where the ion beam is stopped, is a copper cone with an angle of 3.5o, 2.5 m long and 5 mm width. This part is cooled by water flowing on its external surface through the channel formed between the copper cone and a concentric piece with the latter. The thesis is developed in this realm, and its objective is designing the LIPAc beam dump cooling system. The design has been performed employing a simplified one dimensional model. The water parameters (pressure, flow, pressure loss) and the required annular channel geometry (width, rugoisty) have been obtained guaranteeing the correct cooling of the beam dump. It has been checked that the cooling design allows variations of the the beam with respect to the nominal position, being the CHF (Critical Heat Flux) at least twice times higher than the nominal deposited heat flux. 3D fluid dynamic simulations employing ANSYS-CFX code in the beam dump cooling channel sections which require a more thorough study have also been performed. The beam dump will activateasaconsequenceofthe deuteron beam interaction, making impossible any change or maintenance task once the accelerator operation has started. Hence the design has to be very robust and all the hypotheses employed in the design mustbecarefully checked. Most of the work in the thesis is concentrated in estimating the heat transfer coefficient which is decisive in the obtained results, and is also employed as boundary condition in the mechanical analysis. For such task, correlations which applicability range is the adequate for the beam dump conditions (annular channel, water-surface temperature differences of tens of degrees) have been compiled. In a second step the heat transfer coefficients obtained from the selected correlation (Petukhov- Gnielinski) have been compared with the ones deduced from the 3D fluid dynamic simulations, obtaining satisfactory results. Finally an experimental validation has been performed employing a prototype and a hydraulic circuit that supplies a flow with the requested parameters in the beam dump. After several tries and improvements in the experiment, the heat transfer coefficients for different flows and heating powers have been obtained. Considering the uncertainty in the measurements the experimental values agree reasonably well (in the order of 15%) with the ones obtained from the correlations. Due to radiological reasons the quality of the cooling water must be controlled, hence minimizing the copper corrosion. After performing a bibligraphic study the most adequate water parameters were identified (conductivity, pH and dissolved oxygen concentration). As part of this thesis a corrosion study of the beam dump cooling circuit has been performed with the double aim of determining if corrosion can pose a risk for the copper beam dump , and obtaining an estimation of the corrosion velocitytodimension the water purification system. TRACT code(TRansport and ACTivation) has been employed for such study adapting the code for the beam dump case. For such study a collaboration with the code responsible (Panos Karditsas) at Culham (UKAEA) was established. The work developed in this thesis has supposed the publication of three articles in JCR journals (”Journal of Nuclear Materials” y ”Fusion Engineering and Design”), as well as presentations in more than four conferences and relevant meetings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the design and application of the Atmospheric Evaluation and Research Integrated model for Spain (AERIS). Currently, AERIS can provide concentration profiles of NO2, O3, SO2, NH3, PM, as a response to emission variations of relevant sectors in Spain. Results are calculated using transfer matrices based on an air quality modelling system (AQMS) composed by the WRF (meteorology), SMOKE (emissions) and CMAQ (atmospheric-chemical processes) models. The AERIS outputs were statistically tested against the conventional AQMS and observations, revealing a good agreement in both cases. At the moment, integrated assessment in AERIS focuses only on the link between emissions and concentrations. The quantification of deposition, impacts (health, ecosystems) and costs will be introduced in the future. In conclusion, the main asset of AERIS is its accuracy in predicting air quality outcomes for different scenarios through a simple yet robust modelling framework, avoiding complex programming and long computing times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Las futuras misiones para misiles aire-aire operando dentro de la atmósfera requieren la interceptación de blancos a mayores velocidades y más maniobrables, incluyendo los esperados vehículos aéreos de combate no tripulados. La intercepción tiene que lograrse desde cualquier ángulo de lanzamiento. Una de las principales discusiones en la tecnología de misiles en la actualidad es cómo satisfacer estos nuevos requisitos incrementando la capacidad de maniobra del misil y en paralelo, a través de mejoras en los métodos de guiado y control modernos. Esta Tesis aborda estos dos objetivos simultáneamente, al proponer un diseño integrando el guiado y el control de vuelo (autopiloto) y aplicarlo a misiles con control aerodinámico simultáneo en canard y cola. Un primer avance de los resultados obtenidos ha sido publicado recientemente en el Journal of Aerospace Engineering, en Abril de 2015, [Ibarrondo y Sanz-Aranguez, 2015]. El valor del diseño integrado obtenido es que permite al misil cumplir con los requisitos operacionales mencionados empleando únicamente control aerodinámico. El diseño propuesto se compara favorablemente con esquemas más tradicionales, consiguiendo menores distancias de paso al blanco y necesitando de menores esfuerzos de control incluso en presencia de ruidos. En esta Tesis se demostrará cómo la introducción del doble mando, donde tanto el canard como las aletas de cola son móviles, puede mejorar las actuaciones de un misil existente. Comparado con un misil con control en cola, el doble control requiere sólo introducir dos servos adicionales para accionar los canards también en guiñada y cabeceo. La sección de cola será responsable de controlar el misil en balanceo mediante deflexiones diferenciales de los controles. En el caso del doble mando, la complicación añadida es que los vórtices desprendidos de los canards se propagan corriente abajo y pueden incidir sobre las superficies de cola, alterando sus características de control. Como un primer aporte, se ha desarrollado un modelo analítico completo para la aerodinámica no lineal de un misil con doble control, incluyendo la caracterización de este efecto de acoplamiento aerodinámico. Hay dos modos de funcionamiento en picado y guiñada para un misil de doble mando: ”desviación” y ”opuesto”. En modo ”desviación”, los controles actúan en la misma dirección, generando un cambio inmediato en la sustentación y produciendo un movimiento de translación en el misil. La respuesta es rápida, pero en el modo ”desviación” los misiles con doble control pueden tener dificultades para alcanzar grandes ángulos de ataque y altas aceleraciones laterales. Cuando los controles actúan en direcciones opuestas, el misil rota y el ángulo de ataque del fuselaje se incrementa para generar mayores aceleraciones en estado estacionario, aunque el tiempo de respuesta es mayor. Con el modelo aerodinámico completo, es posible obtener una parametrización dependiente de los estados de la dinámica de corto periodo del misil. Debido al efecto de acoplamiento entre los controles, la respuesta en bucle abierto no depende linealmente de los controles. El autopiloto se optimiza para obtener la maniobra requerida por la ley de guiado sin exceder ninguno de los límites aerodinámicos o mecánicos del misil. Una segunda contribución de la tesis es el desarrollo de un autopiloto con múltiples entradas de control y que integra la aerodinámica no lineal, controlando los tres canales de picado, guiñada y cabeceo de forma simultánea. Las ganancias del autopiloto dependen de los estados del misil y se calculan a cada paso de integración mediante la resolución de una ecuación de Riccati de orden 21x21. Las ganancias obtenidas son sub-óptimas, debido a que una solución completa de la ecuación de Hamilton-Jacobi-Bellman no puede obtenerse de manera práctica, y se asumen ciertas simplificaciones. Se incorpora asimismo un mecanismo que permite acelerar la respuesta en caso necesario. Como parte del autopiloto, se define una estrategia para repartir el esfuerzo de control entre el canard y la cola. Esto se consigue mediante un controlador aumentado situado antes del bucle de optimización, que minimiza el esfuerzo total de control para maniobrar. Esta ley de alimentación directa mantiene al misil cerca de sus condiciones de equilibrio, garantizando una respuesta transitoria adecuada. El controlador no lineal elimina la respuesta de fase no-mínima característica de la cola. En esta Tesis se consideran dos diseños para el guiado y control, el control en Doble-Lazo y el control Integrado. En la aproximación de Doble-Lazo, el autopiloto se sitúa dentro de un bucle interior y se diseña independientemente del guiado, que conforma el bucle más exterior del control. Esta estructura asume que existe separación espectral entre los dos, esto es, que los tiempos de respuesta del autopiloto son mucho mayores que los tiempos característicos del guiado. En el estudio se combina el autopiloto desarrollado con una ley de guiado óptimo. Los resultados obtenidos demuestran que se consiguen aumentos muy importantes en las actuaciones frente a misiles con control canard o control en cola, y que la interceptación, cuando se lanza cerca del curso de colisión, se consigue desde cualquier ángulo alrededor del blanco. Para el misil de doble mando, la estrategia óptima resulta en utilizar el modo de control opuesto en la aproximación al blanco y utilizar el modo de desviación justo antes del impacto. Sin embargo la lógica de doble bucle no consigue el impacto cuando hay desviaciones importantes con respecto al curso de colisión. Una de las razones es que parte de la demanda de guiado se pierde, ya que el misil solo es capaz de modificar su aceleración lateral, y no tiene control sobre su aceleración axial, a no ser que incorpore un motor de empuje regulable. La hipótesis de separación mencionada, y que constituye la base del Doble-Bucle, puede no ser aplicable cuando la dinámica del misil es muy alta en las proximidades del blanco. Si se combinan el guiado y el autopiloto en un único bucle, la información de los estados del misil está disponible para el cálculo de la ley de guiado, y puede calcularse la estrategia optima de guiado considerando las capacidades y la actitud del misil. Una tercera contribución de la Tesis es la resolución de este segundo diseño, la integración no lineal del guiado y del autopiloto (IGA) para el misil de doble control. Aproximaciones anteriores en la literatura han planteado este sistema en ejes cuerpo, resultando en un sistema muy inestable debido al bajo amortiguamiento del misil en cabeceo y guiñada. Las simplificaciones que se tomaron también causan que el misil se deslice alrededor del blanco y no consiga la intercepción. En nuestra aproximación el problema se plantea en ejes inerciales y se recurre a la dinámica de los cuaterniones, eliminado estos inconvenientes. No se limita a la dinámica de corto periodo del misil, porque se construye incluyendo de modo explícito la velocidad dentro del bucle de optimización. La formulación resultante en el IGA es independiente de la maniobra del blanco, que sin embargo se ha de incluir en el cálculo del modelo en Doble-bucle. Un típico inconveniente de los sistemas integrados con controlador proporcional, es el problema de las escalas. Los errores de guiado dominan sobre los errores de posición del misil y saturan el controlador, provocando la pérdida del misil. Este problema se ha tratado aquí con un controlador aumentado previo al bucle de optimización, que define un estado de equilibrio local para el sistema integrado, que pasa a actuar como un regulador. Los criterios de actuaciones para el IGA son los mismos que para el sistema de Doble-Bucle. Sin embargo el problema matemático resultante es muy complejo. El problema óptimo para tiempo finito resulta en una ecuación diferencial de Riccati con condiciones terminales, que no puede resolverse. Mediante un cambio de variable y la introducción de una matriz de transición, este problema se transforma en una ecuación diferencial de Lyapunov que puede resolverse mediante métodos numéricos. La solución resultante solo es aplicable en un entorno cercano del blanco. Cuando la distancia entre misil y blanco es mayor, se desarrolla una solución aproximada basada en la solución de una ecuación algebraica de Riccati para cada paso de integración. Los resultados que se han obtenido demuestran, a través de análisis numéricos en distintos escenarios, que la solución integrada es mejor que el sistema de Doble-Bucle. Las trayectorias resultantes son muy distintas. El IGA preserva el guiado del misil y consigue maximizar el uso de la propulsión, consiguiendo la interceptación del blanco en menores tiempos de vuelo. El sistema es capaz de lograr el impacto donde el Doble-Bucle falla, y además requiere un orden menos de magnitud en la cantidad de cálculos necesarios. El efecto de los ruidos radar, datos discretos y errores del radomo se investigan. El IGA es más robusto, resultando menos afectado por perturbaciones que el Doble- Bucle, especialmente porque el núcleo de optimización en el IGA es independiente de la maniobra del blanco. La estimación de la maniobra del blanco es siempre imprecisa y contaminada por ruido, y degrada la precisión de la solución de Doble-Bucle. Finalmente, como una cuarta contribución, se demuestra que el misil con guiado IGA es capaz de realizar una maniobra de defensa contra un blanco que ataque por su cola, sólo con control aerodinámico. Las trayectorias estudiadas consideran una fase pre-programada de alta velocidad de giro, manteniendo siempre el misil dentro de su envuelta de vuelo. Este procedimiento no necesita recurrir a soluciones técnicamente más complejas como el control vectorial del empuje o control por chorro para ejecutar esta maniobra. En todas las demostraciones matemáticas se utiliza el producto de Kronecker como una herramienta practica para manejar las parametrizaciones dependientes de variables, que resultan en matrices de grandes dimensiones. ABSTRACT Future missions for air to air endo-atmospheric missiles require the interception of targets with higher speeds and more maneuverable, including forthcoming unmanned supersonic combat vehicles. The interception will need to be achieved from any angle and off-boresight launch conditions. One of the most significant discussions in missile technology today is how to satisfy these new operational requirements by increasing missile maneuvering capabilities and in parallel, through the development of more advanced guidance and control methods. This Thesis addresses these two objectives by proposing a novel optimal integrated guidance and autopilot design scheme, applicable to more maneuverable missiles with forward and rearward aerodynamic controls. A first insight of these results have been recently published in the Journal of Aerospace Engineering in April 2015, [Ibarrondo and Sanz-Aránguez, 2015]. The value of this integrated solution is that it allows the missile to comply with the aforementioned requirements only by applying aerodynamic control. The proposed design is compared against more traditional guidance and control approaches with positive results, achieving reduced control efforts and lower miss distances with the integrated logic even in the presence of noises. In this Thesis it will be demonstrated how the dual control missile, where canard and tail fins are both movable, can enhance the capabilities of an existing missile airframe. Compared to a tail missile, dual control only requires two additional servos to actuate the canards in pitch and yaw. The tail section will be responsible to maintain the missile stabilized in roll, like in a classic tail missile. The additional complexity is that the vortices shed from the canard propagate downstream where they interact with the tail surfaces, altering the tail expected control characteristics. These aerodynamic phenomena must be properly described, as a preliminary step, with high enough precision for advanced guidance and control studies. As a first contribution we have developed a full analytical model of the nonlinear aerodynamics of a missile with dual control, including the characterization of this cross-control coupling effect. This development has been produced from a theoretical model validated with reliable practical data obtained from wind tunnel experiments available in the scientific literature, complement with computer fluid dynamics and semi-experimental methods. There are two modes of operating a missile with forward and rear controls, ”divert” and ”opposite” modes. In divert mode, controls are deflected in the same direction, generating an increment in direct lift and missile translation. Response is fast, but in this mode, dual control missiles may have difficulties in achieving large angles of attack and high level of lateral accelerations. When controls are deflected in opposite directions (opposite mode) the missile airframe rotates and the body angle of attack is increased to generate greater accelerations in steady-state, although the response time is larger. With the aero-model, a state dependent parametrization of the dual control missile short term dynamics can be obtained. Due to the cross-coupling effect, the open loop dynamics for the dual control missile is not linearly dependent of the fin positions. The short term missile dynamics are blended with the servo system to obtain an extended autopilot model, where the response is linear with the control fins turning rates, that will be the control variables. The flight control loop is optimized to achieve the maneuver required by the guidance law without exceeding any of the missile aerodynamic or mechanical limitations. The specific aero-limitations and relevant performance indicators for the dual control are set as part of the analysis. A second contribution of this Thesis is the development of a step-tracking multi-input autopilot that integrates non-linear aerodynamics. The designed dual control missile autopilot is a full three dimensional autopilot, where roll, pitch and yaw are integrated, calculating command inputs simultaneously. The autopilot control gains are state dependent, and calculated at each integration step solving a matrix Riccati equation of order 21x21. The resulting gains are sub-optimal as a full solution for the Hamilton-Jacobi-Bellman equation cannot be resolved in practical terms and some simplifications are taken. Acceleration mechanisms with an λ-shift is incorporated in the design. As part of the autopilot, a strategy is defined for proper allocation of control effort between canard and tail channels. This is achieved with an augmented feed forward controller that minimizes the total control effort of the missile to maneuver. The feedforward law also maintains the missile near trim conditions, obtaining a well manner response of the missile. The nonlinear controller proves to eliminate the non-minimum phase effect of the tail. Two guidance and control designs have been considered in this Thesis: the Two- Loop and the Integrated approaches. In the Two-Loop approach, the autopilot is placed in an inner loop and designed separately from an outer guidance loop. This structure assumes that spectral separation holds, meaning that the autopilot response times are much higher than the guidance command updates. The developed nonlinear autopilot is linked in the study to an optimal guidance law. Simulations are carried on launching close to collision course against supersonic and highly maneuver targets. Results demonstrate a large boost in performance provided by the dual control versus more traditional canard and tail missiles, where interception with the dual control close to collision course is achieved form 365deg all around the target. It is shown that for the dual control missile the optimal flight strategy results in using opposite control in its approach to target and quick corrections with divert just before impact. However the Two-Loop logic fails to achieve target interception when there are large deviations initially from collision course. One of the reasons is that part of the guidance command is not followed, because the missile is not able to control its axial acceleration without a throttleable engine. Also the separation hypothesis may not be applicable for a high dynamic vehicle like a dual control missile approaching a maneuvering target. If the guidance and autopilot are combined into a single loop, the guidance law will have information of the missile states and could calculate the most optimal approach to the target considering the actual capabilities and attitude of the missile. A third contribution of this Thesis is the resolution of the mentioned second design, the non-linear integrated guidance and autopilot (IGA) problem for the dual control missile. Previous approaches in the literature have posed the problem in body axes, resulting in high unstable behavior due to the low damping of the missile, and have also caused the missile to slide around the target and not actually hitting it. The IGA system is posed here in inertial axes and quaternion dynamics, eliminating these inconveniences. It is not restricted to the missile short term dynamic, and we have explicitly included the missile speed as a state variable. The IGA formulation is also independent of the target maneuver model that is explicitly included in the Two-loop optimal guidance law model. A typical problem of the integrated systems with a proportional control law is the problem of scales. The guidance errors are larger than missile state errors during most of the flight and result in high gains, control saturation and loss of control. It has been addressed here with an integrated feedforward controller that defines a local equilibrium state at each flight point and the controller acts as a regulator to minimize the IGA states excursions versus the defined feedforward state. The performance criteria for the IGA are the same as in the Two-Loop case. However the resulting optimization problem is mathematically very complex. The optimal problem in a finite-time horizon results in an irresoluble state dependent differential Riccati equation with terminal conditions. With a change of variable and the introduction of a transition matrix, the equation is transformed into a time differential Lyapunov equation that can be solved with known numerical methods in real time. This solution results range limited, and applicable when the missile is in a close neighborhood of the target. For larger ranges, an approximate solution is used, obtained from solution of an algebraic matrix Riccati equation at each integration step. The results obtained show, by mean of several comparative numerical tests in diverse homing scenarios, than the integrated approach is a better solution that the Two- Loop scheme. Trajectories obtained are very different in the two cases. The IGA fully preserves the guidance command and it is able to maximize the utilization of the missile propulsion system, achieving interception with lower miss distances and in lower flight times. The IGA can achieve interception against off-boresight targets where the Two- Loop was not able to success. As an additional advantage, the IGA also requires one order of magnitude less calculations than the Two-Loop solution. The effects of radar noises, discrete radar data and radome errors are investigated. IGA solution is robust, and less affected by radar than the Two-Loop, especially because the target maneuvers are not part of the IGA core optimization loop. Estimation of target acceleration is always imprecise and noisy and degrade the performance of the two-Loop solution. The IGA trajectories are such that minimize the impact of radome errors in the guidance loop. Finally, as a fourth contribution, it is demonstrated that the missile with IGA guidance is capable of performing a defense against attacks from its rear hemisphere, as a tail attack, only with aerodynamic control. The studied trajectories have a preprogrammed high rate turn maneuver, maintaining the missile within its controllable envelope. This solution does not recur to more complex features in service today, like vector control of the missile thrust or side thrusters. In all the mathematical treatments and demonstrations, the Kronecker product has been introduced as a practical tool to handle the state dependent parametrizations that have resulted in very high order matrix equations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electric probes are objects immersed in the plasma with sharp boundaries which collect of emit charged particles. Consequently, the nearby plasma evolves under abrupt imposed and/or naturally emerging conditions. There could be localized currents, different time scales for plasma species evolution, charge separation and absorbing-emitting walls. The traditional numerical schemes based on differences often transform these disparate boundary conditions into computational singularities. This is the case of models using advection-diffusion differential equations with source-sink terms (also called Fokker-Planck equations). These equations are used in both, fluid and kinetic descriptions, to obtain the distribution functions or the density for each plasma species close to the boundaries. We present a resolution method grounded on an integral advancing scheme by using approximate Green's functions, also called short-time propagators. All the integrals, as a path integration process, are numerically calculated, what states a robust grid-free computational integral method, which is unconditionally stable for any time step. Hence, the sharp boundary conditions, as the current emission from a wall, can be treated during the short-time regime providing solutions that works as if they were known for each time step analytically. The form of the propagator (typically a multivariate Gaussian) is not unique and it can be adjusted during the advancing scheme to preserve the conserved quantities of the problem. The effects of the electric or magnetic fields can be incorporated into the iterative algorithm. The method allows smooth transitions of the evolving solutions even when abrupt discontinuities are present. In this work it is proposed a procedure to incorporate, for the very first time, the boundary conditions in the numerical integral scheme. This numerical scheme is applied to model the plasma bulk interaction with a charge-emitting electrode, dealing with fluid diffusion equations combined with Poisson equation self-consistently. It has been checked the stability of this computational method under any number of iterations, even for advancing in time electrons and ions having different time scales. This work establishes the basis to deal in future work with problems related to plasma thrusters or emissive probes in electromagnetic fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dentro de las técnicas de control de procesos no lineales, los controladores de estructura variable con modos deslizantes (VSC-SM en sus siglas en inglés) han demostrado ser una solución robusta, por lo cual han sido ampliamente estudiados en las cuatro últimas décadas. Desde los años ochenta se han presentado varios trabajos enfocados a especificar controladores VSC aplicados a sistemas de tiempo discreto (DVSC), siendo uno de los mayores intereses de análisis obtener las mismas prestaciones de robustez e invarianza de los controladores VSC-SM. El objetivo principal del trabajo de Tesis Doctoral consiste en estudiar, analizar y proponer unos esquemas de diseño de controladores DVSC en procesos multivariable tanto lineales como no lineales. De dicho estudio se propone una nueva filosofía de diseño de superficies deslizantes estables donde se han considerado aspectos hasta ahora no estudiados en el uso de DVSC-SM como son las limitaciones físicas de los actuadores y la dinámica deslizante no ideal. Lo más novedoso es 1) la propuesta de una nueva metodología de diseño de superficies deslizantes aplicadas a sistemas MIMO lineales y la extensión del mismo al caso de sistemas multivariables no lineales y 2) la definición de una nueva ley de alcance y de una ley de control robusta aplicada a sistemas MIMO, tanto lineales como no lineales, incluyendo un esquema de reducción de chattering. Finalmente, con el fin de ilustrar la eficiencia de los esquemas presentados, se incluyen ejemplos numéricos relacionados con el tema tratado en cada uno de los capítulos de la memoria. ABSTRACT Over the last four decades, variable structure controllers with sliding mode (VSC-SM) have been extensively studied, demonstrating to be a robust solution among robust nonlinear processes control techniques. Since the late 80s, several research works have been focused on the application of VSC controllers applied to discrete time or sampled data systems, which are known as DVSC-SM, where the most extensive source of analysis has been devoted to the robustness and invariance properties of VSC-SM controllers when applied to discrete systems. The main aim of this doctoral thesis work is to study, analyze and propose a design scheme of DVSC-SM controllers for lineal and nonlinear multivariable discrete time processes. For this purpose, a new design philosophy is proposed, where various design features have been considered that have not been analyzed in DVSC design approaches. Among them, the physical limitations and the nonideal dynamic sliding mode dynamics. The most innovative aspect is the inclusion of a new design methodology applied to lineal sliding surfaces MIMO systems and the extension to nonlinear multivariable systems, in addition to a new robust control law applied to lineal and nonlinear MIMO systems, including a chattering reduction scheme. Finally, to illustrate the efficiency of the proposed schemes, several numerical examples applied to lineal and nonlinear systems are included.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En la última década la potencia instalada de energía solar fotovoltaica ha crecido una media de un 49% anual y se espera que alcance el 16%del consumo energético mundial en el año 2050. La mayor parte de estas instalaciones se corresponden con sistemas conectados a la red eléctrica y un amplio porcentaje de ellas son instalaciones domésticas o en edificios. En el mercado ya existen diferentes arquitecturas para este tipo de instalaciones, entre las que se encuentras los módulos AC. Un módulo AC consiste en un inversor, también conocido como micro-inversor, que se monta en la parte trasera de un panel o módulo fotovoltaico. Esta tecnología ofrece modularidad, redundancia y la extracción de la máxima potencia de cada panel solar de la instalación. Además, la expansión de esta tecnología posibilitará una reducción de costes asociados a las economías de escala y a la posibilidad de que el propio usuario pueda componer su propio sistema. Sin embargo, el micro-inversor debe ser capaz de proporcionar una ganancia de tensión adecuada para conectar el panel solar directamente a la red, mientras mantiene un rendimiento aceptable en un amplio rango de potencias. Asimismo, los estándares de conexión a red deber ser satisfechos y el tamaño y el tiempo de vida del micro-inversor son factores que han de tenerse siempre en cuenta. En esta tesis se propone un micro-inversor derivado de la topología “forward” controlado en el límite entre los modos de conducción continuo y discontinuo (BCM por sus siglas en inglés). El transformador de la topología propuesta mantiene la misma estructura que en el convertidor “forward” clásico y la utilización de interruptores bidireccionales en el secundario permite la conexión directa del inversor a la red. Asimismo el método de control elegido permite obtener factor de potencia cercano a la unidad con una implementación sencilla. En la tesis se presenta el principio de funcionamiento y los principales aspectos del diseño del micro-inversor propuesto. Con la idea de mantener una solución sencilla y de bajo coste, se ha seleccionado un controlador analógico que está originalmente pensado para controlar un corrector del factor de potencia en el mismo modo de conducción que el micro-inversor “forward”. La tesis presenta las principales modificaciones necesarias, con especial atención a la detección del cruce por cero de la corriente (ZCD por sus siglas en inglés) y la compatibilidad del controlador con la inclusión de un algoritmo de búsqueda del punto de máxima potencia (MPPT por sus siglas en inglés). Los resultados experimentales muestran las limitaciones de la implementación elegida e identifican al transformador como el principal contribuyente a las pérdidas del micro-inversor. El principal objetivo de esta tesis es contribuir a la aplicación de técnicas de control y diseño de sistemas multifase en micro-inversores fotovoltaicos. En esta tesis se van a considerar dos configuraciones multifase diferentes aplicadas al micro-inversor “forward” propuesto. La primera consiste en una variación con conexión paralelo-serie que permite la utilización de transformadores con una relación de vueltas baja, y por tanto bien acoplados, para conseguir una ganancia de tensión adecuada con un mejor rendimiento. Esta configuración emplea el mismo control BCM cuando la potencia extraída del panel solar es máxima. Este método de control implica que la frecuencia de conmutación se incrementa considerablemente cuando la potencia decrece, lo que compromete el rendimiento. Por lo tanto y con la intención de mantener unos bueno niveles de rendimiento ponderado, el micro-inversor funciona en modo de conducción discontinuo (DCM, por sus siglas en inglés) cuando la potencia extraía del panel solar es menor que la máxima. La segunda configuración multifase considerada en esta tesis es la aplicación de la técnica de paralelo con entrelazado. Además se han considerado dos técnicas diferentes para decidir el número de fases activas: dependiendo de la potencia continua extraída del panel solar y dependiendo de la potencia instantánea demandada por el micro-inversor. La aplicación de estas técnicas es interesante en los sistemas fotovoltaicos conectados a la red eléctrica por la posibilidad que brindan de obtener un rendimiento prácticamente plano en un amplio rango de potencia. Las configuraciones con entrelazado se controlan en DCM para evitar la necesidad de un control de corriente, lo que es importante cuando el número de fases es alto. Los núcleos adecuados para todas las configuraciones multifase consideradas se seleccionan usando el producto de áreas. Una vez seleccionados los núcleos se ha realizado un diseño detallado de cada uno de los transformadores. Con la información obtenida de los diseños y los resultados de simulación, se puede analizar el impacto que el número de transformadores utilizados tiene en el tamaño y el rendimiento de las distintas configuraciones. Los resultados de este análisis, presentado en esta tesis, se utilizan posteriormente para comparar las distintas configuraciones. Muchas otras topologías se han presentado en la literatura para abordar los diferentes aspectos a considerar en los micro-inversores, que han sido presentados anteriormente. La mayoría de estas topologías utilizan un transformador de alta frecuencia para solventar el salto de tensión y evitar problemas de seguridad y de puesta a tierra. En cualquier caso, es interesante evaluar si topologías sin aislamiento galvánico son aptas para su utilización como micro-inversores. En esta tesis se presenta una revisión de inversores con capacidad de elevar tensión, que se comparan bajo las mismas especificaciones. El objetivo es proporcionar la información necesaria para valorar si estas topologías son aplicables en los módulos AC. Las principales contribuciones de esta tesis son: • La aplicación del control BCM a un convertidor “forward” para obtener un micro-inversor de una etapa sencillo y de bajo coste. • La modificación de dicho micro-inversor con conexión paralelo-series de transformadores que permite reducir la corriente de los semiconductores y una ganancia de tensión adecuada con transformadores altamente acoplados. • La aplicación de técnicas de entrelazado y decisión de apagado de fases en la puesta en paralelo del micro-inversor “forward”. • El análisis y la comparación del efecto en el tamaño y el rendimiento del incremento del número de transformadores en las diferentes configuraciones multifase. • La eliminación de las medidas y los lazos de control de corriente en las topologías multifase con la utilización del modo de conducción discontinuo y un algoritmo MPPT sin necesidad de medida de corriente. • La recopilación y comparación bajo las mismas especificaciones de topologías inversoras con capacidad de elevar tensión, que pueden ser adecuadas para la utilización como micro-inversores. Esta tesis está estructurada en seis capítulos. El capítulo 1 presenta el marco en que se desarrolla la tesis así como el alcance de la misma. En el capítulo 2 se recopilan las topologías existentes de micro-invesores con aislamiento y aquellas sin aislamiento cuya implementación en un módulo AC es factible. Asimismo se presenta la comparación entre estas topologías bajo las mismas especificaciones. El capítulo 3 se centra en el micro-inversor “forward” que se propone originalmente en esta tesis. La aplicación de las técnicas multifase se aborda en los capítulos 4 y 5, en los que se presentan los análisis en función del número de transformadores. El capítulo está orientado a la propuesta paralelo-serie mientras que la configuración con entrelazado se analiza en el capítulo 5. Por último, en el capítulo 6 se presentan las contribuciones de esta tesis y los trabajos futuros. ABSTRACT In the last decade the photovoltaic (PV) installed power increased with an average growth of 49% per year and it is expected to cover the 16% of the global electricity consumption by 2050. Most of the installed PV power corresponds to grid-connected systems, with a significant percentage of residential installations. In these PV systems, the inverter is essential since it is the responsible of transferring into the grid the extracted power from the PV modules. Several architectures have been proposed for grid-connected residential PV systems, including the AC-module technology. An AC-module consists of an inverter, also known as micro-inverter, which is attached to a PV module. The AC-module technology offers modularity, redundancy and individual MPPT of each module. In addition, the expansion of this technology will enable the possibility of economies of scale of mass market and “plug and play” for the user, thus reducing the overall cost of the installation. However, the micro-inverter must be able to provide the required voltage boost to interface a low voltage PV module to the grid while keeping an acceptable efficiency in a wide power range. Furthermore, the quality standards must be satisfied and size and lifetime of the solutions must be always considered. In this thesis a single-stage forward micro-inverter with boundary mode operation is proposed to address the micro-inverter requirements. The transformer in the proposed topology remains as in the classic forward converter and bidirectional switches in the secondary side allows direct connection to the grid. In addition the selected control strategy allows high power factor current with a simple implementation. The operation of the topology is presented and the main design issues are introduced. With the intention to propose a simple and low-cost solution, an analog controller for a PFC operated in boundary mode is utilized. The main necessary modifications are discussed, with the focus on the zero current detection (ZCD) and the compatibility of the controller with a MPPT algorithm. The experimental results show the limitations of the selected analog controller implementation and the transformer is identified as a main losses contributor. The main objective of this thesis is to contribute in the application of control and design multiphase techniques to the PV micro-inverters. Two different multiphase configurations have been applied to the forward micro-inverter proposed in this thesis. The first one consists of a parallel-series connected variation which enables the use of low turns ratio, i.e. well coupled, transformers to achieve a proper voltage boost with an improved performance. This multiphase configuration implements BCM control at maximum load however. With this control method the switching frequency increases significantly for light load operation, thus jeopardizing the efficiency. Therefore, in order to keep acceptable weighted efficiency levels, DCM operation is selected for low power conditions. The second multiphase variation considered in this thesis is the interleaved configuration with two different phase shedding techniques: depending on the DC power extracted from the PV panel, and depending on the demanded instantaneous power. The application of interleaving techniques is interesting in PV grid-connected inverters for the possibility of flat efficiency behavior in a wide power range. The interleaved variations of the proposed forward micro-inverter are operated in DCM to avoid the current loop, which is important when the number of phases is large. The adequate transformer cores for all the multiphase configurations are selected according to the area product parameter and a detailed design of each required transformer is developed. With this information and simulation results, the impact in size and efficiency of the number of transformer used can be assessed. The considered multiphase topologies are compared in this thesis according to the results of the introduced analysis. Several other topological solutions have been proposed to solve the mentioned concerns in AC-module application. The most of these solutions use a high frequency transformer to boost the voltage and avoid grounding and safety issues. However, it is of interest to assess if the non-isolated topologies are suitable for AC-module application. In this thesis a review of transformerless step-up inverters is presented. The compiled topologies are compared using a set benchmark to provide the necessary information to assess whether non-isolated topologies are suitable for AC-module application. The main contributions of this thesis are: • The application of the boundary mode control with constant off-time to a forward converter, to obtain a simple and low-cost single-stage forward micro-inverter. • A modification of the forward micro-inverter with primary-parallel secondary-series connected transformers to reduce the current stress and improve the voltage gain with highly coupled transformers. •The application of the interleaved configuration with different phase shedding strategies to the proposed forward micro-inverter. • An analysis and comparison of the influence in size and efficiency of increasing the number of transformers in the parallel-series and interleaved multiphase configurations. • Elimination of the current loop and current measurements in the multiphase topologies by adopting DCM operation and a current sensorless MPPT. • A compilation and comparison with the same specifications of suitable non-isolated step-up inverters. This thesis is organized in six chapters. In Chapter 1 the background of single-phase PV-connected systems is discussed and the scope of the thesis is defined. Chapter 2 compiles the existing solutions for isolated micro-inverters and transformerless step-up inverters suitable for AC-module application. In addition, the most convenient non-isolated inverters are compared using a defined benchmark. Chapter 3 focuses on the originally proposed single-stage forward micro-inverter. The application of multiphase techniques is addressed in Chapter 4 and Chapter 5, and the impact in different parameters of increasing the number of phases is analyzed. In Chapter 4 an original primary-parallel secondary-series variation of the forward micro-inverter is presented, while Chapter 5 focuses on the application of the interleaved configuration. Finally, Chapter 6 discusses the contributions of the thesis and the future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La robótica móvil constituye un área de desarrollo y explotación de interés creciente. Existen ejemplos de robótica móvil de relevancia destacada en el ámbito industrial y se estima un fuerte crecimiento en el terreno de la robótica de servicios. En la arquitectura software de todos los robots móviles suelen aparecer con frecuencia componentes que tienen asignadas competencias de gobierno, navegación, percepción, etcétera, todos ellos de importancia destacada. Sin embargo, existe un elemento, difícilmente prescindible en este tipo de robots, el cual se encarga del control de velocidad del dispositivo en sus desplazamientos. En el presente proyecto se propone desarrollar un controlador PID basado en el modelo y otro no basado en el modelo. Dichos controladores deberán operar en un robot con configuración de triciclo disponible en el Departamento de Sistemas Informáticos y deberán por tanto ser programados en lenguaje C para ejecutar en el procesador digital de señal destinado para esa actividad en el mencionado robot (dsPIC33FJ128MC802). ABSTRACT Mobile robotics constitutes an area of development and exploitation of increasing interest. There are examples of mobile robotics of outstanding importance in industry and strong growth is expected in the field of service robotics. In the software architecture of all mobile robots usually appear components which have assigned competences of government, navigation, perceptionetc., all of them of major importance. However, there is an essential element in this type of robots, which takes care of the speed control. The present project aims to develop a model-based and other non-model-based PID controller. These controllers must operate in a robot with tricycle settings, available from the Department of Computing Systems, and should therefore be programmed in C language to run on the digital signal processor dedicated to that activity in the robot (dsPIC33FJ128MC802).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This document is a summary of the Bachelor thesis titled “VHDL-Based System Design of a Cognitive Sensorimotor Loop (CSL) for Haptic Human-Machine Interaction (HMI)” written by Pablo de Miguel Morales, Electronics Engineering student at the Universidad Politécnica de Madrid (UPM Madrid, Spain) during an Erasmus+ Exchange Program at the Beuth Hochschule für Technik (BHT Berlin, Germany). The tutor of this project is Dr. Prof. Hild. This project has been developed inside the Neurobotics Research Laboratory (NRL) in close collaboration with Benjamin Panreck, a member of the NRL, and another exchange student from the UPM Pablo Gabriel Lezcano. For a deeper comprehension of the content of the thesis, a deeper look in the document is needed as well as the viewing of the videos and the VHDL design. In the growing field of automation, a large amount of workforce is dedicated to improve, adapt and design motor controllers for a wide variety of applications. In the specific field of robotics or other machinery designed to interact with humans or their environment, new needs and technological solutions are often being discovered due to the existing, relatively unexplored new scenario it is. The project consisted of three main parts: Two VHDL-based systems and one short experiment on the haptic perception. Both VHDL systems are based on a Cognitive Sensorimotor Loop (CSL) which is a control loop designed by the NRL and mainly developed by Dr. Prof. Hild. The CSL is a control loop whose main characteristic is the fact that it does not use any external sensor to measure the speed or position of the motor but the motor itself. The motor always generates a voltage that is proportional to its angular speed so it does not need calibration. This method is energy efficient and simplifies control loops in complex systems. The first system, named CSL Stay In Touch (SIT), consists in a one DC motor system controller by a FPGA Board (Zynq ZYBO 7000) whose aim is to keep contact with any external object that touches its Sensing Platform in both directions. Apart from the main behavior, three features (Search Mode, Inertia Mode and Return Mode) have been designed to enhance the haptic interaction experience. Additionally, a VGA-Screen is also controlled by the FPGA Board for the monitoring of the whole system. This system has been completely developed, tested and improved; analyzing its timing and consumption properties. The second system, named CSL Fingerlike Mechanism (FM), consists in a fingerlike mechanical system controlled by two DC motors (Each controlling one part of the finger). The behavior is similar to the first system but in a more complex structure. This system was optional and not part of the original objectives of the thesis and it could not be properly finished and tested due to the lack of time. The haptic perception experiment was an experiment conducted to have an insight into the complexity of human haptic perception in order to implement this knowledge into technological applications. The experiment consisted in testing the capability of the subjects to recognize different objects and shapes while being blindfolded and with their ears covered. Two groups were done, one had full haptic perception while the other had to explore the environment with a plastic piece attached to their finger to create a haptic handicap. The conclusion of the thesis was that a haptic system based only on a CSL-based system is not enough to retrieve valuable information from the environment and that other sensors are needed (temperature, pressure, etc.) but that a CSL-based system is very useful to control the force applied by the system to interact with haptic sensible surfaces such as skin or tactile screens. RESUMEN. Este documento es un resumen del proyecto fin de grado titulado “VHDL-Based System Design of a Cognitive Sensorimotor Loop (CSL) for Haptic Human-Machine Interaction (HMI)” escrito por Pablo de Miguel, estudiante de Ingeniería Electrónica de Comunicaciones en la Universidad Politécnica de Madrid (UPM Madrid, España) durante un programa de intercambio Erasmus+ en la Beuth Hochschule für Technik (BHT Berlin, Alemania). El tutor de este proyecto ha sido Dr. Prof. Hild. Este proyecto se ha desarrollado dentro del Neurorobotics Research Laboratory (NRL) en estrecha colaboración con Benjamin Panreck (un miembro del NRL) y con Pablo Lezcano (Otro estudiante de intercambio de la UPM). Para una comprensión completa del trabajo es necesaria una lectura detenida de todo el documento y el visionado de los videos y análisis del diseño VHDL incluidos en el CD adjunto. En el creciente sector de la automatización, una gran cantidad de esfuerzo está dedicada a mejorar, adaptar y diseñar controladores de motor para un gran rango de aplicaciones. En el campo específico de la robótica u otra maquinaria diseñada para interactuar con los humanos o con su entorno, nuevas necesidades y soluciones tecnológicas se siguen desarrollado debido al relativamente inexplorado y nuevo escenario que supone. El proyecto consta de tres partes principales: Dos sistemas basados en VHDL y un pequeño experimento sobre la percepción háptica. Ambos sistemas VHDL están basados en el Cognitive Sesnorimotor Loop (CSL) que es un lazo de control creado por el NRL y cuyo desarrollador principal ha sido Dr. Prof. Hild. El CSL es un lazo de control cuya principal característica es la ausencia de sensores externos para medir la velocidad o la posición del motor, usando el propio motor como sensor. El motor siempre genera un voltaje proporcional a su velocidad angular de modo que no es necesaria calibración. Este método es eficiente en términos energéticos y simplifica los lazos de control en sistemas complejos. El primer sistema, llamado CSL Stay In Touch (SIT), consiste en un sistema formado por un motor DC controlado por una FPGA Board (Zynq ZYBO 7000) cuyo objetivo es mantener contacto con cualquier objeto externo que toque su plataforma sensible en ambas direcciones. Aparte del funcionamiento básico, tres modos (Search Mode, Inertia Mode y Return Mode) han sido diseñados para mejorar la interacción. Adicionalmente, se ha diseñado el control a través de la FPGA Board de una pantalla VGA para la monitorización de todo el sistema. El sistema ha sido totalmente desarrollado, testeado y mejorado; analizando su propiedades de timing y consumo energético. El segundo sistema, llamado CSL Fingerlike Mechanism (FM), consiste en un mecanismo similar a un dedo controlado por dos motores DC (Cada uno controlando una falange). Su comportamiento es similar al del primer sistema pero con una estructura más compleja. Este sistema no formaba parte de los objetivos iniciales del proyecto y por lo tanto era opcional. No pudo ser plenamente desarrollado debido a la falta de tiempo. El experimento de percepción háptica fue diseñado para profundizar en la percepción háptica humana con el objetivo de aplicar este conocimiento en aplicaciones tecnológicas. El experimento consistía en testear la capacidad de los sujetos para reconocer diferentes objetos, formas y texturas en condiciones de privación del sentido del oído y la vista. Se crearon dos grupos, en uno los sujetos tenían plena percepción háptica mientras que en el otro debían interactuar con los objetos a través de una pieza de plástico para generar un hándicap háptico. La conclusión del proyecto fue que un sistema háptico basado solo en sistemas CSL no es suficiente para recopilar información valiosa del entorno y que debe hacer uso de otros sensores (temperatura, presión, etc.). En cambio, un sistema basado en CSL es idóneo para el control de la fuerza aplicada por el sistema durante la interacción con superficies hápticas sensibles tales como la piel o pantallas táctiles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

V2Ic control provides very fast dynamic performance to the Buck converter both under load steps and under voltage reference steps. However, the design of this control is complex since it is prone to subharmonic oscillations and several parameters affect the stability of the system. This paper derives and validates a very accurate modeling and stability analysis of a closed-loop V2Ic control using the Floquet theory. This allows the derivation of sensitivity analysis to design a robust converter. The proposed methodology is validated on a 5-MHz Buck converter. The work is also extended to V2 control using the same methodology, showing high accuracy and robustness. The paper also demonstrates, on the V2 control, that even a low bandwidth-linear controller can affect the stability of a ripple-based control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nesta dissertação, um tipo diferente de pêndulo invertido controlado por rodas de reação é apresentado. Sua principal diferença está em seu ponto de articulação, que é constituído por uma junta esférica que permite com que o pêndulo gire em torno de seus três eixos. Além disso, três rodas de reação são utilizadas para seu controle e estabilização. Primeiramente, um modelo do sistema é obtido a partir das equação de Euler-Lagrange, das leis de Newton e das leis de Kirchhoff. Em seguida, uma lei de controle que assegura a estabilização assintótica do sistema em um grande domínio é proposta. Por fim, simulações são realizadas para validar o controlador projetado. Esse sistema possui diversas características interessantes, tanto do ponto de vista teórico como do ponto de vista de pesquisa. Do ponto de vista teórico, o sistema é nãolinear e suas entradas são fortemente acopladas, o que torna particularmente adequado para o processo de projeto e implementação de diversas técnicas de estabilização. Do ponto de vista de pesquisa, são consideradas duas técnicas de controle não linear: linearização padrão e linearização exata. Para que o sistema seja robusto e não desperdice energia, essas duas leis de controle diferentes são comutadas para a obtencão de um número suficiente de domínio de estabilidade.