978 resultados para Robot motion
Resumo:
This paper presents a motion control system for tracking of attitude and speed of an underactuated slender-hull unmanned underwater vehicle. The feedback control strategy is developed using the Port-Hamiltonian theory. By shaping of the target dynamics (desired dynamic response in closed loop) with particular attention to the target mass matrix, the influence of the unactuated dynamics on the controlled system is suppressed. This results in achievable dynamics independent of stable uncontrolled states. Throughout the design, the insight of the physical phenomena involved is used to propose the desired target dynamics. Integral action is added to the system for robustness and to reject steady disturbances. This is achieved via a change of coordinates that result in input-to-state stable (ISS) target dynamics. As a final step in the design, an anti-windup scheme is implemented to account for limited actuator capacity, namely saturation. The performance of the design is demonstrated through simulation with a high-fidelity model.
Resumo:
Robot Path Planning (RPP) in dynamic environments is a search problem based on the examination of collision-free paths in the presence of dynamic and static obstacles. Many techniques have been developed to solve this problem. Trapping in a local minima and maintaining a Real-Time performance are known as the two most important challenges that these techniques face to solve such problem. This study presents a comprehensive survey of the various techniques that have been proposed in this domain. As part of this survey, we include a classification of the approaches and identify their methods.
Resumo:
Although robotics research has seen advances over the last decades robots are still not in widespread use outside industrial applications. Yet a range of proposed scenarios have robots working together, helping and coexisting with humans in daily life. In all these a clear need to deal with a more unstructured, changing environment arises. I herein present a system that aims to overcome the limitations of highly complex robotic systems, in terms of autonomy and adaptation. The main focus of research is to investigate the use of visual feedback for improving reaching and grasping capabilities of complex robots. To facilitate this a combined integration of computer vision and machine learning techniques is employed. From a robot vision point of view the combination of domain knowledge from both imaging processing and machine learning techniques, can expand the capabilities of robots. I present a novel framework called Cartesian Genetic Programming for Image Processing (CGP-IP). CGP-IP can be trained to detect objects in the incoming camera streams and successfully demonstrated on many different problem domains. The approach requires only a few training images (it was tested with 5 to 10 images per experiment) is fast, scalable and robust yet requires very small training sets. Additionally, it can generate human readable programs that can be further customized and tuned. While CGP-IP is a supervised-learning technique, I show an integration on the iCub, that allows for the autonomous learning of object detection and identification. Finally this dissertation includes two proof-of-concepts that integrate the motion and action sides. First, reactive reaching and grasping is shown. It allows the robot to avoid obstacles detected in the visual stream, while reaching for the intended target object. Furthermore the integration enables us to use the robot in non-static environments, i.e. the reaching is adapted on-the- fly from the visual feedback received, e.g. when an obstacle is moved into the trajectory. The second integration highlights the capabilities of these frameworks, by improving the visual detection by performing object manipulation actions.
Resumo:
Ship seakeeping operability refers to the quantification of motion performance in waves relative to mission requirements. This is used to make decisions about preferred vessel designs, but it can also be used as comprehensive assessment of the benefits of ship-motion-control systems. Traditionally, operability computation aggregates statistics of motion computed over over the envelope of likely environmental conditions in order to determine a coefficient in the range from 0 to 1 called operability. When used for assessment of motion-control systems, the increase of operability is taken as the key performance indicator. The operability coefficient is often given the interpretation of the percentage of time operable. This paper considers an alternative probabilistic approach to this traditional computation of operability. It characterises operability not as a number to which a frequency interpretation is attached, but as a hypothesis that a vessel will attain the desired performance in one mission considering the envelope of likely operational conditions. This enables the use of Bayesian theory to compute the probability of that this hypothesis is true conditional on data from simulations. Thus, the metric considered is the probability of operability. This formulation not only adheres to recent developments in reliability and risk analysis, but also allows incorporating into the analysis more accurate descriptions of ship-motion-control systems since the analysis is not limited to linear ship responses in the frequency domain. The paper also discusses an extension of the approach to the case of assessment of increased levels of autonomy for unmanned marine craft.
Resumo:
Algorithms for planning quasistatic attitude maneuvers based on the Jacobian of the forward kinematic mapping of fully-reversed (FR) sequences of rotations are proposed in this paper. An FR sequence of rotations is a series of finite rotations that consists of initial rotations about the axes of a body-fixed coordinate frame and subsequent rotations that undo these initial rotations. Unlike the Jacobian of conventional systems such as a robot manipulator, the Jacobian of the system manipulated through FR rotations is a null matrix at the identity, which leads to a total breakdown of the traditional Jacobian formulation. Therefore, the Jacobian algorithm is reformulated and implemented so as to synthesize an FR sequence for a desired rotational displacement. The Jacobian-based algorithm presented in this paper identifies particular six-rotation FR sequences that synthesize desired orientations. We developed the single-step and the multiple-step Jacobian methods to accomplish a given task using six-rotation FR sequences. The single-step Jacobian method identifies a specific FR sequence for a given desired orientation and the multiple-step Jacobian algorithm synthesizes physically feasible FR rotations on an optimal path. A comparison with existing algorithms verifies the fast convergence ability of the Jacobian-based algorithm. Unlike closed-form solutions to the inverse kinematics problem, the Jacobian-based algorithm determines the most efficient FR sequence that yields a desired rotational displacement through a simple and inexpensive numerical calculation. The procedure presented here is useful for those motion planning problems wherein the Jacobian is singular or null.
Resumo:
The stability characteristics of a Helmholtz velocity profile in a stably stratified, compressible atmosphere in the presence of a lower boundary are studied. A jump in the Brunt–Väisälä frequency is introduced and the level at which this jump occurs is assumed to be different from the shear zone, to simulate sharp temperature discontinuities in the atmosphere. The results are compared with those of Pellacani, Tebaldi, and Tosi and Lindzen and Rosenthal. In the present configuration, new unstable modes with larger growth rates are found. The wavelengths of the most unstable gravity waves for the parameters pertaining to observed cases of clear air turbulence agree quite closely with the experimental values. Physics of Fluids is copyrighted by The American Institute of Physics
Resumo:
Ninety-two strong-motion earthquake records from the California region, U.S.A., have been statistically studied using principal component analysis in terms of twelve important standardized strong-motion characteristics. The first two principal components account for about 57 per cent of the total variance. Based on these two components the earthquake records are classified into nine groups in a two-dimensional principal component plane. Also a unidimensional engineering rating scale is proposed. The procedure can be used as an objective approach for classifying and rating future earthquakes.
Resumo:
In this paper we have used the method of characteristics developed for two dimensional unsteady flow problems to study a simplified axial turbine problem. The system consists of two sets of blades —the guiding vanes which are fixed and the rotor blades which move perpendicular to these vanes. The initial undisturbed constant flow in the system is perturbed by introducing a small velocity normal to the rotor blades to simulate a slight constant inclination. The resulting perturbed flow is periodic after the first three cycles. We have studied the perturbed density distribution throughout the system during a period.
Resumo:
The critical stream power criterion may be used to describe the incipient motion of cohesionless particles of plane sediment beds. The governing equation relating ``critical stream power'' to ``shear Reynolds number'' is developed by using the present experimental data as well as the data from several other sources. Simultaneously, a resistance equation, relating the ``particle Reynolds number'' to the``shear Reynolds number'' is developed for plane sediment beds in wide channels with little or no transport. By making use of these relations, a procedure is developed to design plane sediment beds such that any two of the four design variables, including particle size, energy/friction slope, flow depth, and discharge per unit width in the channel should be known to predict the remaining two variables. Finally, a straightforward design procedure using design tables/design curves and analytical methods is presented to solve six possible design problems.
Resumo:
Introduction Markerless motion capture systems are relatively new devices that can significantly speed up capturing full body motion. A precision of the assessment of the finger’s position with this type of equipment was evaluated at 17.30 ± 9.56 mm when compare to an active marker system [1]. The Microsoft Kinect was proposed to standardized and enhanced clinical evaluation of patients with hemiplegic cerebral palsy [2]. Markerless motion capture systems have the potential to be used in a clinical setting for movement analysis, as well as for large cohort research. However, the precision of such system needs to be characterized. Global objectives • To assess the precision within the recording field of the markerless motion capture system Openstage 2 (Organic Motion, NY). • To compare the markerless motion capture system with an optoelectric motion capture system with active markers. Specific objectives • To assess the noise of a static body at 13 different location within the recording field of the markerless motion capture system. • To assess the smallest oscillation detected by the markerless motion capture system. • To assess the difference between both systems regarding the body joint angle measurement. Methods Equipment • OpenStage® 2 (Organic Motion, NY) o Markerless motion capture system o 16 video cameras (acquisition rate : 60Hz) o Recording zone : 4m * 5m * 2.4m (depth * width * height) o Provide position and angle of 23 different body segments • VisualeyezTM VZ4000 (PhoeniX Technologies Incorporated, BC) o Optoelectric motion capture system with active markers o 4 trackers system (total of 12 cameras) o Accuracy : 0.5~0.7mm Protocol & Analysis • Static noise: o Motion recording of an humanoid mannequin was done in 13 different locations o RMSE was calculated for each segment in each location • Smallest oscillation detected: o Small oscillations were induced to the humanoid mannequin and motion was recorded until it stopped. o Correlation between the displacement of the head recorded by both systems was measured. A corresponding magnitude was also measured. • Body joints angle: o Body motion was recorded simultaneously with both systems (left side only). o 6 participants (3 females; 32.7 ± 9.4 years old) • Tasks: Walk, Squat, Shoulder flexion & abduction, Elbow flexion, Wrist extension, Pronation / supination (not in results), Head flexion & rotation (not in results), Leg rotation (not in results), Trunk rotation (not in results) o Several body joint angles were measured with both systems. o RMSE was calculated between signals of both systems. Results Conclusion Results show that the Organic Motion markerless system has the potential to be used for assessment of clinical motor symptoms or motor performances However, the following points should be considered: • Precision of the Openstage system varied within the recording field. • Precision is not constant between limb segments. • The error seems to be higher close to the range of motion extremities.
Resumo:
Red blood cells (RBCs) are the most common type of blood cells in the blood and 99% of the blood cells are RBCs. During the circulation of blood in the cardiovascular network, RBCs squeeze through the tiny blood vessels (capillaries). They exhibit various types of motions and deformed shapes, when flowing through these capillaries with diameters varying between 5 10 µm. RBCs occupy about 45 % of the whole blood volume and the interaction between the RBCs directly influences on the motion and the deformation of the RBCs. However, most of the previous numerical studies have explored the motion and deformation of a single RBC when the interaction between RBCs has been neglected. In this study, motion and deformation of two 2D (two-dimensional) RBCs in capillaries are comprehensively explored using a coupled smoothed particle hydrodynamics (SPH) and discrete element method (DEM) model. In order to clearly model the interactions between RBCs, only two RBCs are considered in this study even though blood with RBCs is continuously flowing through the blood vessels. A spring network based on the DEM is employed to model the viscoelastic membrane of the RBC while the inside and outside fluid of RBC is modelled by SPH. The effect of the initial distance between two RBCs, membrane bending stiffness (Kb) of one RBC and undeformed diameter of one RBC on the motion and deformation of both RBCs in a uniform capillary is studied. Finally, the deformation behavior of two RBCs in a stenosed capillary is also examined. Simulation results reveal that the interaction between RBCs has significant influence on their motion and deformation.
Resumo:
In this paper we have discussed the motion of a viscous fluid with suspended particles through a curved tube of small curvature ratio. The system is treated as two separate interacting continua. Solutions for axial and secondary velocities are obtained in the form of asymptotic expansions in powers of Dean Number. The streamline pattern for the particulate phase reveals many interesting features. The influence of the particulate continium on the fluid is described by the parameter τ which depends on the density ratio of the two continua. The concentration distribution of the particles in a given cross section is determined. It is noticed that the particles move closer to the wall for certain values of the concentration and the density ratio.
Resumo:
The aim of this thesis is to develop a fully automatic lameness detection system that operates in a milking robot. The instrumentation, measurement software, algorithms for data analysis and a neural network model for lameness detection were developed. Automatic milking has become a common practice in dairy husbandry, and in the year 2006 about 4000 farms worldwide used over 6000 milking robots. There is a worldwide movement with the objective of fully automating every process from feeding to milking. Increase in automation is a consequence of increasing farm sizes, the demand for more efficient production and the growth of labour costs. As the level of automation increases, the time that the cattle keeper uses for monitoring animals often decreases. This has created a need for systems for automatically monitoring the health of farm animals. The popularity of milking robots also offers a new and unique possibility to monitor animals in a single confined space up to four times daily. Lameness is a crucial welfare issue in the modern dairy industry. Limb disorders cause serious welfare, health and economic problems especially in loose housing of cattle. Lameness causes losses in milk production and leads to early culling of animals. These costs could be reduced with early identification and treatment. At present, only a few methods for automatically detecting lameness have been developed, and the most common methods used for lameness detection and assessment are various visual locomotion scoring systems. The problem with locomotion scoring is that it needs experience to be conducted properly, it is labour intensive as an on-farm method and the results are subjective. A four balance system for measuring the leg load distribution of dairy cows during milking in order to detect lameness was developed and set up in the University of Helsinki Research farm Suitia. The leg weights of 73 cows were successfully recorded during almost 10,000 robotic milkings over a period of 5 months. The cows were locomotion scored weekly, and the lame cows were inspected clinically for hoof lesions. Unsuccessful measurements, caused by cows standing outside the balances, were removed from the data with a special algorithm, and the mean leg loads and the number of kicks during milking was calculated. In order to develop an expert system to automatically detect lameness cases, a model was needed. A probabilistic neural network (PNN) classifier model was chosen for the task. The data was divided in two parts and 5,074 measurements from 37 cows were used to train the model. The operation of the model was evaluated for its ability to detect lameness in the validating dataset, which had 4,868 measurements from 36 cows. The model was able to classify 96% of the measurements correctly as sound or lame cows, and 100% of the lameness cases in the validation data were identified. The number of measurements causing false alarms was 1.1%. The developed model has the potential to be used for on-farm decision support and can be used in a real-time lameness monitoring system.
Resumo:
Abstract is not available.