935 resultados para Robòtica
Resumo:
Visual attention is a very important task in autonomous robotics, but, because of its complexity, the processing time required is significant. We propose an architecture for feature selection using foveated images that is guided by visual attention tasks and that reduces the processing time required to perform these tasks. Our system can be applied in bottom-up or top-down visual attention. The foveated model determines which scales are to be used on the feature extraction algorithm. The system is able to discard features that are not extremely necessary for the tasks, thus, reducing the processing time. If the fovea is correctly placed, then it is possible to reduce the processing time without compromising the quality of the tasks outputs. The distance of the fovea from the object is also analyzed. If the visual system loses the tracking in top-down attention, basic strategies of fovea placement can be applied. Experiments have shown that it is possible to reduce up to 60% the processing time with this approach. To validate the method, we tested it with the feature algorithm known as Speeded Up Robust Features (SURF), one of the most efficient approaches for feature extraction. With the proposed architecture, we can accomplish real time requirements of robotics vision, mainly to be applied in autonomous robotics
Resumo:
In this work, we propose methodologies and computer tools to insert robots in cultural environments. The basic idea is to have a robot in a real context (a cultural space) that can represent an user connected to the system through Internet (visitor avatar in the real space) and that the robot also have its representation in a Mixed Reality space (robot avatar in the virtual space). In this way, robot and avatar are not simply real and virtual objects. They play a more important role in the scenery, interfering in the process and taking decisions. In order to have this service running, we developed a module composed by a robot, communication tools and ways to provide integration of these with the virtual environment. As welI we implemented a set of behaviors with the purpose of controlling the robot in the real space. We studied available software and hardware tools for the robotics platform used in the experiments, as welI we developed test routines to determine their potentialities. Finally, we studied the behavior-based control model, we planned and implemented alI the necessary behaviors for the robot integration to the real and virtual cultural spaces. Several experiments were conducted, in order to validate the developed methodologies and tools
Resumo:
We propose a new approach to reduction and abstraction of visual information for robotics vision applications. Basically, we propose to use a multi-resolution representation in combination with a moving fovea for reducing the amount of information from an image. We introduce the mathematical formalization of the moving fovea approach and mapping functions that help to use this model. Two indexes (resolution and cost) are proposed that can be useful to choose the proposed model variables. With this new theoretical approach, it is possible to apply several filters, to calculate disparity and to obtain motion analysis in real time (less than 33ms to process an image pair at a notebook AMD Turion Dual Core 2GHz). As the main result, most of time, the moving fovea allows the robot not to perform physical motion of its robotics devices to keep a possible region of interest visible in both images. We validate the proposed model with experimental results
Resumo:
In recent years, the radio frequency identification technology (RFID) has gained great interest both industrial communities as scientific communities. Its ability to locate and monitor objects, animals and persons with active or passive tags allows easy development, with good cost-benefice and still presents undeniable benefits in applications ranging from logistics to healthcare, robotics, security, among others. Within this aspect what else comes excelling are RFID tags and the antennas used in RFID readers. Most tags have antennas omnidirectional and are usually manufactured as dipoles modified printed. The primary purpose of a project of antenna for tag is to achieve the required input impedance to perform a good marriage impedance with the load impedance of the chip. Already the objective principal in project of antennas for readers is to achieve reduced sizes and structures with good data transmission capacity. This work brings the numerical characterization of antennas for RFID applications, being these divided into tags RFID and antennas for RFID readers. Three tags RFID and two antennas for RFID readers, found in literature, are analyzed. The analysis of these structures is made using the Method of Waves - WCIP. Initial results found in the literature are compared with those obtained through simulations in WCIP with objective to show that the Method of Waves is able to analyze such structures. To illustrate the results obtained in simulations is presented the behavior of electric and magnetic fields. It also performed a literature review on the characteristics and principles of RFID technology. Suggestions for continuity to this work are presented
Resumo:
The development and refinement of techniques that make simultaneous localization and mapping (SLAM) for an autonomous mobile robot and the building of local 3-D maps from a sequence of images, is widely studied in scientific circles. This work presents a monocular visual SLAM technique based on extended Kalman filter, which uses features found in a sequence of images using the SURF descriptor (Speeded Up Robust Features) and determines which features can be used as marks by a technique based on delayed initialization from 3-D straight lines. For this, only the coordinates of the features found in the image and the intrinsic and extrinsic camera parameters are avaliable. Its possible to determine the position of the marks only on the availability of information of depth. Tests have shown that during the route, the mobile robot detects the presence of characteristics in the images and through a proposed technique for delayed initialization of marks, adds new marks to the state vector of the extended Kalman filter (EKF), after estimating the depth of features. With the estimated position of the marks, it was possible to estimate the updated position of the robot at each step, obtaining good results that demonstrate the effectiveness of monocular visual SLAM system proposed in this paper
Resumo:
Visual Odometry is the process that estimates camera position and orientation based solely on images and in features (projections of visual landmarks present in the scene) extraced from them. With the increasing advance of Computer Vision algorithms and computer processing power, the subarea known as Structure from Motion (SFM) started to supply mathematical tools composing localization systems for robotics and Augmented Reality applications, in contrast with its initial purpose of being used in inherently offline solutions aiming 3D reconstruction and image based modelling. In that way, this work proposes a pipeline to obtain relative position featuring a previously calibrated camera as positional sensor and based entirely on models and algorithms from SFM. Techniques usually applied in camera localization systems such as Kalman filters and particle filters are not used, making unnecessary additional information like probabilistic models for camera state transition. Experiments assessing both 3D reconstruction quality and camera position estimated by the system were performed, in which image sequences captured in reallistic scenarios were processed and compared to localization data gathered from a mobile robotic platform
Resumo:
Considering the transition from industrial society to information society, we realize that the digital training that is addressed is currently insufficient to navigate within a digitized reality. As proposed to minimize this problem, this paper assesses, validates and develops the software RoboEduc to work with educational robotics with the main differential programming of robotic devices in levels, considering the specifics of reality training . One of the emphases of this work isthe presentation of materials and procedures involving the development, analysis and evolution of this software. For validation of usability tests were performed, based on analysis of these tests was developed version 4.0 of RoboEduc
Resumo:
This work addresses the dynamic control problem of two-wheeled differentially driven non-holonomic mobile robot. Strategies for robot positioning control and robot orientating control are presented. Such strategies just require information about the robot con¯guration (x, y and teta), which can be collected by an absolute positioning system. The strategies development is related to a change on the controlled variables for such systems, from x, y and teta to s (denoting the robot linear displacement) and teta, and makes use of the polar coordinates representation for the robot kinematic model. Thus, it is possible to obtain a linear representation for the mobile robot dynamic model and to develop such strategies. It is also presented that such strategies allow the use of linear controllers to solve the control problem. It is shown that there is flexibility to choice the linear controller (P, PI, PID, Model Matching techniques, others) to be implemented. This work presents an introduction to mobile robotics and their characteristics followed by the control strategies development and controllers design. Finally, simulated and experimental results are presented and commented
Resumo:
The main task and one of the major mobile robotics problems is its navigation process. Conceptualy, this process means drive the robot from an initial position and orientation to a goal position and orientation, along an admissible path respecting the temporal and velocity constraints. This task must be accomplished by some subtasks like robot localization in the workspace, admissible path planning, trajectory generation and motion control. Moreover, autonomous wheeled mobile robots have kinematics constraints, also called nonholonomic constraints, that impose the robot can not move everywhere freely in its workspace, reducing the number of feasible paths between two distinct positions. This work mainly approaches the path planning and trajectory generation problems applied to wheeled mobile robots acting on a robot soccer environment. The major dificulty in this process is to find a smooth function that respects the imposed robot kinematic constraints. This work proposes a path generation strategy based on parametric polynomials of third degree for the 'x' and 'y' axis. The 'theta' orientation is derived from the 'y' and 'x' relations in such a way that the generated path respects the kinematic constraint. To execute the trajectory, this work also shows a simple control strategy acting on the robot linear and angular velocities
Resumo:
This work intends to show a new and few explored SLAM approach inside the simultaneous localization and mapping problem (SLAM). The purpose is to put a mobile robot to work in an indoor environment. The robot should map the environment and localize itself in the map. The robot used in the tests has an upward camera and encoders on the wheels. The landmarks in this built map are light splotches on the images of the camera caused by luminaries on the ceil. This work develops a solution based on Extended Kalman Filter to the SLAM problem using a developed observation model. Several developed tests and softwares to accomplish the SLAM experiments are shown in details
Resumo:
We propose in this work a software architecture for robotic boats intended to act in diverse aquatic environments, fully autonomously, performing telemetry to a base station and getting this mission to be accomplished. This proposal aims to apply within the project N-Boat Lab NatalNet DCA, which aims to empower a sailboat navigating autonomously. The constituent components of this architecture are the memory modules, strategy, communication, sensing, actuation, energy, security and surveillance, making these systems the boat and base station. To validate the simulator was developed in C language and implemented using the graphics API OpenGL resources, whose main results were obtained in the implementation of memory, performance and strategy modules, more specifically data sharing, control of sails and rudder and planning short routes based on an algorithm for navigation, respectively. The experimental results, shown in this study indicate the feasibility of the actual use of the software architecture developed and their application in the area of autonomous mobile robotics
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Educação para a Ciência - FC
Resumo:
Esta dissertação de mestrado apresenta o projeto e a construção de um robô móvel terrestre denominado LOGBOT, com tração de movimento do tipo diferencial – com duas rodas motoras e uma roda livre para manter a estabilidade de sua estrutura em relação à superfície. O controle do robô dispõe dos modos de telemetria e autônomo. No modo de controle por telemetria (ROV), a comunicação do robô com a estação de controle é feita por radiofreqüência a uma distância de até um quilometro em ambientes externos, e até cem metros em ambientes internos. No modo de controle autônomo (AGV), o robô tem habilidade para navegar em ambientes internos e desconhecidos usando sempre a parede à sua esquerda como referência para a trajetória de seu movimento. A seqüência de movimentos para execução da trajetória é enviada para a estação de controle que realiza análises de desempenho do robô. Para executar suas tarefas no modo autônomo, a programação do robô conta com um agente inteligente reativo, que detecta características do ambiente (obstáculos, final de paredes, etc.) e decide sobre qual atitude deve ser executada pelo robô, com objetivo de contornar os obstáculos e controlar a velocidade de suas rodas. Os problemas de erro odométrico e suas correções com base no uso de informações sensoriais externas são devidamente tratados. Técnicas de controle hierárquico do robô como um todo e controle em malha fechada da velocidade das rodas do robô são usadas. Os resultados mostraram que o robô móvel LOGBOT é capaz de navegar, com estabilidade e precisão, em ambientes internos no formato de um corredor (wall following).
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)