820 resultados para Road infrastructure
Resumo:
The proposed project consists of improving approximately 2.6 miles of Collins Road NE (Highway 100) in Cedar Rapids, Iowa. The project extends from the intersection of Center Point Road to approximately 750 feet east of its intersection with 1st Avenue.
Resumo:
Not only are we excited that Team Archaeology is back for our third ride, we are energized to be part of a “Human and Natural History” partnership that allows us expanded opportunities to share the story of Iowa’s amazing past. Once again there will be archaeologists along for the ride, as well as at Expo and this year at roadside locations Day One, Five and Six. Don’t hesitate to ask about the history of the first people to travel this landscape as well as the stories of each generation that has contributed to what we know of ourselves today. We will also feature information about the landscape and natural resources of Iowa you will encounter along the route through our partnering colleagues specializing in geology, hydrology, and other earth sciences. Enjoy using this booklet as your guide to the week’s activities and please help yourself to free materials from our outreach booth about our shared past and the natural world we depend on. Ride smart, be safe, and when you get home, be sure to tell your friends and neighbors about Iowa archaeology!
Resumo:
This plan makes 25 recommendations that, when takes together, will take Iowa's infrastructure to the next level, ensure quality of life, and allow the economy to be globally competitive. It requires two fundamental changes in Iowans' prectices: cooperative planning and integration of infrastructure sectors.
Resumo:
The Rebuild Iowa Infrastructure and Transportation Task Force is acutely aware of the critical role infrastructure plays in Iowa’s communities, the lives of the residents, and the economic well-being of the state. With encouragement to the Rebuild Iowa Advisory Commission (RIAC) for its consideration of great need for infrastructure and transportation repairs, the Task Force provides its assessment and recommendations. As the RIAC fulfills its obligations to guide the recovery and reconstruction in Iowa, infrastructure and transportation must be recognized for its impact on all Iowans. The tornadoes, storms, and floods were devastating to infrastructure and transportation systems across the state. The damage did not distinguish between privately-owned and public assets. The significance of the damage emerges further with the magnitude of the damage estimates. Infrastructure includes components that some might initially overlook, such as communication systems, landfills, and water treatment. The miles of damaged roads and bridges are more evident to many Iowans. Given the reliance on infrastructure systems, many repairs are already underway, though gaps have emerged in the funding for repairs to certain infrastructure systems. Supplement Information to the August 2008
Resumo:
Team Archaeology is back for a second year to share the history of Iowa with the riders and supporters of RAGBRAI.
Resumo:
Per legislative requirement, attached is the Iowa Department of Transportation’s summary of project status for infrastructure projects that have been appropriated revenue from various funds including Rebuild Iowa Infrastructure, Health Restricted Capitals, Bridge Safety, Revenue Bonds Capitals, and Revenue Bonds Capitals II. Although a status report for the Bridge Safety Fund was already submitted to the directors of LSA and DOM, a status report on those projects is also included within this attachment for consistency with last year’s reporting. In addition, per request from LSA, status reports for the FY 2011 passenger rail appropriation from the Underground Storage Tank Fund and the FY 2010 Commercial Service Vertical Infrastructure appropriation from the General Fund are also listed in this report.
Resumo:
We present a theoretical framework for determining the short- and long-run effects of infrastructure. While the short-run effects have been the focus of most previous studies, here we derive long-run elasticities by taking into account the adjustment of quasi-fixed inputs to their optimum levels. By considering the impact of infrastructure on private investment decisions, we observe how, apart from the direct effect on costs in the short-run, infrastructure exerts an indirect source of influence in the long-run through their effect on private capital. The model is applied to manufacturing industries in the Spanish regions
Resumo:
We present a theoretical framework for determining the short- and long-run effects of infrastructure. While the short-run effects have been the focus of most previous studies, here we derive long-run elasticities by taking into account the adjustment of quasi-fixed inputs to their optimum levels. By considering the impact of infrastructure on private investment decisions, we observe how, apart from the direct effect on costs in the short-run, infrastructure exerts an indirect source of influence in the long-run through their effect on private capital. The model is applied to manufacturing industries in the Spanish regions
Resumo:
BACKGROUND: Qualitative frameworks, especially those based on the logical discrete formalism, are increasingly used to model regulatory and signalling networks. A major advantage of these frameworks is that they do not require precise quantitative data, and that they are well-suited for studies of large networks. While numerous groups have developed specific computational tools that provide original methods to analyse qualitative models, a standard format to exchange qualitative models has been missing. RESULTS: We present the Systems Biology Markup Language (SBML) Qualitative Models Package ("qual"), an extension of the SBML Level 3 standard designed for computer representation of qualitative models of biological networks. We demonstrate the interoperability of models via SBML qual through the analysis of a specific signalling network by three independent software tools. Furthermore, the collective effort to define the SBML qual format paved the way for the development of LogicalModel, an open-source model library, which will facilitate the adoption of the format as well as the collaborative development of algorithms to analyse qualitative models. CONCLUSIONS: SBML qual allows the exchange of qualitative models among a number of complementary software tools. SBML qual has the potential to promote collaborative work on the development of novel computational approaches, as well as on the specification and the analysis of comprehensive qualitative models of regulatory and signalling networks.
Resumo:
Not only are we excited that Team Archaeology is back for our third ride, we are energized to be part of a “Human and Natural History” partnership that allows us expanded opportunities to share the story of Iowa’s amazing past. Once again there will be archaeologists along for the ride, as well as at Expo and this year at roadside locations Day One, Five and Six. Don’t hesitate to ask about the history of the first people to travel this landscape as well as the stories of each generation that has contributed to what we know of ourselves today. We will also feature information about the landscape and natural resources of Iowa you will encounter along the route through our partnering colleagues specializing in geology, hydrology, and other earth sciences. Enjoy using this booklet as your guide to the week’s activities and please help yourself to free materials from our outreach booth about our shared past and the natural world we depend on. Ride smart, be safe, and when you get home, be sure to tell your friends and neighbors about Iowa archaeology!
Resumo:
This manual summarizes the roadside tree and brush control methods used by all of Iowa's 99 counties. It is based on interviews conducted in Spring 2002 with county engineers, roadside managers and others. The target audience of this manual is the novice county engineer or roadside manager. Iowa law is nearly silent on roadside tree and brush control, so individual counties have been left to decide on the level of control they want to achieve and maintain. Different solutions have been developed but the goal of every county remains the same: to provide safe roads for the traveling public. Counties in eastern and southern Iowa appear to face the greatest brush control challenge. Most control efforts can be divided into two categories: mechanical and chemical. Mechanical control includes cutting tools and supporting equipment. A chain saw is the most widely used cutting tool. Tractor mounted boom mowers and brush cutters are used to prune miles of brush but have significant safety and aesthetic limitations and boom mowers are easily broken by inexperienced operators. The advent of tree shears and hydraulic thumbs offer unprecedented versatility. Bulldozers are often considered a method of last resort since they reduce large areas to bare ground. Any chipper that violently grabs brush should not be used. Chemical control is the application of herbicide to different parts of a plant: foliar spray is applied to leaves; basal bark spray is applied to the tree trunk; a cut stump treatment is applied to the cambium ring of a cut surface. There is reluctance by many to apply herbicide into the air due to drift concerns. One-third of Iowa counties do not use foliar spray. By contrast, several accepted control methods are directed toward the ground. Freshly cut stumps should be treated to prevent resprouting. Basal bark spray is highly effective in sensitive areas such as near houses. Interest in chemical control is slowly increasing as herbicides and application methods are refined. Fall burning, a third, distinctly separate technique is underused as a brush control method and can be effective if timed correctly. In all, control methods tend to reflect agricultural patterns in a county. The use of chain saws and foliar sprays tends to increase in counties where row crops predominate, and boom mowing tends to increase in counties where grassland predominates. For counties with light to moderate roadside brush, rotational maintenance is the key to effective control. The most comprehensive approach to control is to implement an integrated roadside vegetation management (IRVM) program. An IRVM program is usually directed by a Roadside Manager whose duties may be shared with another position. Funding for control programs comes from the Rural Services Basic portion of a county's budget. The average annual county brush control budget is about $76,000. That figure is thought not to include shared expenses such as fuel and buildings. Start up costs for an IRVM program are less if an existing control program is converted. In addition, IRVM budgets from three different northeastern Iowa counties are offered for comparison in this manual. The manual also includes a chapter on temporary traffic control in rural work zones, a summary of the Iowa Code as it relates to brush control, and rules on avoiding seasonal disturbance of the endangered Indiana bat. Appendices summarize survey and forest cover data, an equipment inventory, sample forms for record keeping, a sample brush control policy, a few legal opinions, a literature search, and a glossary.