321 resultados para Rnai
Resumo:
Microvascular endothelial monolayers from mouse myocardium (MyEnd) cultured for up to 5 days postconfluency became increasingly resistant to various barrier-compromising stimuli such as low extracellular Ca2+ and treatment with the Ca2+ ionophore A23187 and with the actin depolymerising compound cytochalasin D. In contrast, microvascular endothelial monolayers from mouse lung microvessels (PulmEnd) remained sensitive to these conditions during the entire culture period which corresponds to the well-known in vivo sensitivity of the lung microvasculature to Ca2+depletion and cytochalasin D treatment. One molecular difference between pulmonary and myocardial endothelial cells was found to be transglutaminase 1 (TGase1) which is strongly expressed in myocardial endothelial cells but is absent from pulmonary endothelial cells. Resistance of MyEnd cells to barrier-breaking conditions correlated strongly with translocation of TGase1 to intercellular junctions. Simultaneous inhibition of intracellular and extracellular TGase activity by monodansylcadaverine (MDC) strongly weakened barrier properties of MyEnd monolayers, whereas inhibition of extracellular TGases by the membrane-impermeable active site-directed TGase inhibitor R281 did not reduce barrier properties. Weakening of barrier properties could be also induced in MyEnd cells by downregulation of TGase1 expression using RNAi-based gene silencing. These findings suggest that crosslinking activity of intracellular TGase1 at intercellular junctions may play a role in controlling barrier properties of endothelial monolayers.
Resumo:
The juvenile hormones (JHs) are sesquiterpenoid compounds that play a central role in insect reproduction, development and behavior. They are synthesized and secreted by a pair of small endocrine glands, the corpora allata (CA), which are intimately connected to the brain. The enzymes involved in the biosynthesis of JH are attractive targets for the control of mosquito populations. This dissertation is a comprehensive functional study of five Aedes aegypti CA enzymes, HMG-CoA synthase (AaHMGS), mevalonate kinase (AaMK), phosphomevalonate kinase (AaPMK), farnesyl diphosphate synthase (AaFPPS) and farnesyl pyrophosphate phosphatase (AaFPPase). The enzyme AaHMGS catalyzes the condensation of acetoacetyl-CoA and acetyl-CoA to produce HMG-CoA. The enzyme does not require any co-factor, although its activity is enhanced by addition of Mg2+. The enzyme AaMK is a class I mevalonate kinase that catalyzes the ATP-dependent phosphorylation of mevalonic acid to form mevalonate 5-phosphate. Activity of AaMK is inhibited by isoprenoids. The enzyme AaPMK catalyzes the cation-dependent reversible reaction of phosphomevalonate and ATP to form diphosphate mevalonate and ADP. The enzyme AaFPPS catalyzes the condensation of isopentenyl diphosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) to form geranyl diphosphate (GPP) and farnesyl pyrophosphate (FPP). The enzyme AaFPPS shows an unusual product regulation mechanism, with chain length final product of 10 or 15 C depending on the metal cofactor present. The enzymes AaFPPase-1 and AaFPPase-2 efficiently hydrolyze FPP into farnesol, although RNAi experiments demonstrate that only AaFPPase-1 is involved in the catalysis of FPP into FOL in the CA of A. aegypti. This dissertation also explored the inhibition of the activity of some of the JH biosynthesis enzymes as tools for insect control. We described the effect of N-acetyl-S-geranylgeranyl-L-cysteine as a potent inhibitor of AaFPPase 1 and AaFPPase-2. In addition, inhibitors of AaMK and AaHMGS were also investigated using purified recombinant proteins. The present study provides an important contribution to the characterization of recombinant proteins, the analysis of enzyme kinetics and inhibition constants, as well as the understanding of the importance of these five enzymes in the control of JH biosynthesis rates.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
The complete and faithful duplication of the genome is essential to ensure normal cell division and organismal development. Eukaryotic DNA replication is initiated at multiple sites termed origins of replication that are activated at different time through S phase. The replication timing program is regulated by the S-phase checkpoint, which signals and repairs replicative stress. Eukaryotic DNA is packaged with histones into chromatin, thus DNA-templated processes including replication are modulated by the local chromatin environment such as post-translational modifications (PTMs) of histones.
One such epigenetic mark, methylation of lysine 20 on histone H4 (H4K20), has been linked to chromatin compaction, transcription, DNA repair and DNA replication. H4K20 can be mono-, di- and tri-methylated. Monomethylation of H4K20 (H4K20me1) is mediated by the cell cycle-regulated histone methyltransferase PR-Set7 and subsequent di-/tri- methylation is catalyzed by Suv4-20. Prior studies have shown that PR-Set7 depletion in mammalian cells results in defective S phase progression and the accumulation of DNA damage, which may be partially attributed to defects in origin selection and activation. Meanwhile, overexpression of mammalian PR-Set7 recruits components of pre-Replication Complex (pre-RC) onto chromatin and licenses replication origins for re-replication. However, these studies were limited to only a handful of mammalian origins, and it remains unclear how PR-Set7 impacts the replication program on a genomic scale. Finally, the methylation substrates of PR-Set7 include both histone (H4K20) and non-histone targets, therefore it is necessary to directly test the role of H4K20 methylation in PR-Set7 regulated phenotypes.
I employed genetic, cytological, and genomic approaches to better understand the role of H4K20 methylation in regulating DNA replication and genome stability in Drosophila melanogaster cells. Depletion of Drosophila PR-Set7 by RNAi in cultured Kc167 cells led to an ATR-dependent cell cycle arrest with near 4N DNA content and the accumulation of DNA damage, indicating a defect in completing S phase. The cells were arrested at the second S phase following PR-Set7 downregulation, suggesting that it was an epigenetic effect that coupled to the dilution of histone modification over multiple cell cycles. To directly test the role of H4K20 methylation in regulating genome integrity, I collaborated with the Duronio Lab and observed spontaneous DNA damage on the imaginal wing discs of third instar mutant larvae that had an alanine substitution on H4K20 (H4K20A) thus unable to be methylated, confirming that H4K20 is a bona fide target of PR-Set7 in maintaining genome integrity.
One possible source of DNA damage due to loss of PR-Set7 is reduced origin activity. I used BrdU-seq to profile the genome-wide origin activation pattern. However, I found that deregulation of H4K20 methylation states by manipulating the H4K20 methyltransferases PR-Set7 and Suv4-20 had no impact on origin activation throughout the genome. I then mapped the genomic distribution of DNA damage upon PR-Set7 depletion. Surprisingly, ChIP-seq of the DNA damage marker γ-H2A.v located the DNA damage to late replicating euchromatic regions of the Drosophila genome, and the strength of γ-H2A.v signal was uniformly distributed and spanned the entire late replication domain, implying stochastic replication fork collapse within late replicating regions. Together these data suggest that PR-Set7-mediated monomethylation of H4K20 is critical for maintaining the genomic integrity of late replicating domains, presumably via stabilization of late replicating forks.
In addition to investigating the function of H4K20me, I also used immunofluorescence to characterize the cell cycle regulated chromatin loading of Mcm2-7 complex, the DNA helicase that licenses replication origins, using H4K20me1 level as a proxy for cell cycle stages. In parallel with chromatin spindown data by Powell et al. (Powell et al. 2015), we showed a continuous loading of Mcm2-7 during G1 and a progressive removal from chromatin through S phase.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Locomotor recovery from anoxia is complicated and little is known about the molecular and cellular mechanisms regulating anoxic recovery in Drosophila. For this thesis I established a protocol for large-scale analysis of locomotor activity in adult flies with exposure to a transient anoxia. Using this protocol I observed that wild-type Canton-S flies recovered faster and more consistently from anoxia than the white-eyed mutant w1118, which carries a null allele of w1118 in an isogenic genetic background. Both Canton-S and w1118 are commonly used controls in the Drosophila community. Genetic analysis including serial backcrossing, RNAi knockdown, w+ duplication to Y chromosome as well as gene mutation revealed a strong association between the white gene and the timing of locomotor recovery. I also found that the locomotor recovery phenotype is independent of white-associated eye pigmentation, that heterozygous w+ allele was haplo-insufficient to induce fast and consistent locomotor recovery from anoxia in female flies, and that mini-white is insufficient to promote fast and consistent locomotor recovery. Moreover, locomotor recovery was delayed in flies with RNAi knockdown of white in subsets of serotonin neurons in the central nervous system. I further demonstrated that mutations of phosphodiesterase genes (PDE) displayed wild-type-like fast and consistent locomotor recovery, and that locomotor recovery was light-sensitive in the night in w1118. The delayed locomotor recovery and the light sensitivity were eliminated in PDE mutants that were dual-specific or cyclic guanosine monophosphate (cGMP)-specific. Up-regulation of cGMP using multiple approaches including PDE mutation, sildenafil feeding or specific expression of an atypical soluble guanylyl cyclase (Gyc88E) was sufficient to suppress w-RNAi induced delay of locomotor recovery. Taken together, these data strongly support the hypothesis that White transports cGMP and promotes fast and consistent locomotor recovery from anoxia.
Resumo:
Vascular smooth muscle cell (VSMC) behaviour and phenotypic modulation is critical to vessel repair following damage, and the progression of various cardiovascular diseases. The second messenger cyclic adenosine monophosphosphate (cAMP) plays a key role in VSMC function under the synthetic/activated phenotype, which is typically associated with unhealthy cell behaviour. Consequently, cAMP signaling is often targeted in attempts to impact several pathological diseases, including atherosclerosis, restenosis, and pulmonary arterial hypertension (PAH). The cyclic nucleotide phosphodiesterases (PDEs) catalyze hydrolysis of cAMP to an inactive form, and therefore directly regulate cAMP signaling. The PDE4D family dominates in synthetic VSMCs, and there is considerable interest in determining how distinct PDE4D isoforms affect cell function. Specifically, we are interested in the potential link between short isoforms of PDE4D and VSMC desensitization to pharmacological agents that impact cardiovascular disease via cAMP signaling. This study extends on previous work that assessed the expression of PDE4D splice variants in rat aortic VSMCs following prolonged challenge with cAMP-elevating agents. It was determined that PDE4D1 and PDE4D2 were uniquely expressed in synthetic VSMCs incubated with these agents, and that this upregulation impacted PDE activity and cAMP accumulation in these cells. Here, we report that PDE4D1 and PDE4D2 are markedly upregulated in synthetic human aortic smooth muscle cells (HASMCs) following prolonged challenge with cAMP-elevating agents. Using a combination of RNAi-based and pharmacological approaches, we establish that this upregulation is reflected in levels of cAMP PDE activity, and restricted to the cytosolic sub-cellular compartment. Our results suggest a role for localized PDE4D1 and PDE4D2 activity in regulating cAMP-mediated desensitization in HASMCs, and highlight their therapeutic potential in treating various cardiovascular diseases.
Resumo:
To further investigate the importance of insulin signaling in the growth, development, sexual maturation and egg production of adult schistosomes, we have focused attention on the insulin receptors (SjIRs) of Schistosoma japonicum, which we have previously cloned and partially characterised. We now show, by Biolayer Interferometry, that human insulin can bind the L1 subdomain (insulin binding domain) of recombinant (r)SjIR1 and rSjIR2 (designated SjLD1 and SjLD2) produced using the Drosophila S2 protein expression system. We have then used RNA interference (RNAi) to knock down the expression of the SjIRs in adult S. japonicum in vitro and show that, in addition to their reduced transcription, the transcript levels of other important downstream genes within the insulin pathway, associated with glucose metabolism and schistosome fecundity, were also impacted substantially. Further, a significant decrease in glucose uptake was observed in the SjIR-knockdown worms compared with luciferase controls. In vaccine/challenge experiments, we found that rSjLD1 and rSjLD2 depressed female growth, intestinal granuloma density and faecal egg production in S. japonicum in mice presented with a low dose challenge infection. These data re-emphasize the potential of the SjIRs as veterinary transmission blocking vaccine candidates against zoonotic schistosomiasis japonica in China and the Philippines.
Resumo:
Characterization of the genomic basis underlying schistosome biology is an important strategy for the development of future treatments and interventions. Genomic sequence is now available for the three major clinically relevant schistosome species, Schistosoma mansoni, S. japonicum and S. haematobium, and this information represents an invaluable resource for the future control of human schistosomiasis. The identification of a biologically important, but distinct from the host, schistosome gene product is the ultimate goal for many research groups. While the initial elucidation of the genome of an organism is critical for most biological research, continued improvement or curation of the genome construction should be an ongoing priority. In this review we will discuss prominent recent findings utilizing a systems approach to schistosome biology, as well as the increased use of interference RNA (RNAi). Both of these research strategies are aiming to place parasite genes into a more meaningful biological perspective.
Resumo:
RNA interference (RNAi) has been shown to be a valuable tool to specifically target gene expression in a number of organisms becoming an indispensable weapon in the arsenal in functional genomics. In this study, we demonstrate that streptolysin-O (SLO) reversible permeabilisation is an efficient method to deliver small interfering RNAs (siRNAs) to hard-to-transfect human myeloma cell lines. We used published, pre-validated siRNAs for ERK2 and non-silencing siRNA control. We transfected siRNAs into human myeloma cell lines using SLO reversible permeabilisation method. Flow cytometry and western blot analysis were performed to assess the effect of SLO on transfection efficiency and ERK2 knockdown. These experiments demonstrate that SLO reversible permeabilisation method is an efficient and easy-to-use method to deliver siRNAs into human myeloma cell lines. Optimised SLO permeabilisation method showed to transfect >80% of JIM-3, H929, RPM18226 and U266 cells, with minimal effect on cell viability (<10%) and cell cycle. Equally important, SLO permeabilisation induced a substantial knockdown of ERK2 at the protein level. These studies demonstrate that reversible SLO permeabilisation can successfully be applied to hard-to-transfect human myeloma cell lines to effectively silence genes. (C) 2008 Published by Elsevier B.V.
Resumo:
Resistance to radiotherapy due to insufficient cancer cell death is a significant cause of treatment failure in non-small cell lung cancer (NSCLC). The endogenous caspase-8 inhibitor, FLIP, is a critical regulator of cell death that is frequently overexpressed in NSCLC and is an established inhibitor of apoptotic cell death induced via the extrinsic death receptor pathway. Apoptosis induced by ionizing radiation (IR) has been considered to be mediated predominantly via the intrinsic apoptotic pathway; however, we found that IR-induced apoptosis was significantly attenuated in NSCLC cells when caspase-8 was depleted using RNA interference (RNAi), suggesting involvement of the extrinsic apoptosis pathway. Moreover, overexpression of wild-type FLIP, but not a mutant form that cannot bind the critical death receptor adaptor protein FADD, also attenuated IR-induced apoptosis, confirming the importance of the extrinsic apoptotic pathway as a determinant of response to IR in NSCLC. Importantly, when FLIP protein levels were down-regulated by RNAi, IR-induced cell death was significantly enhanced. The clinically relevant histone deacetylase (HDAC) inhibitors vorinostat and entinostat were subsequently found to sensitize a subset of NSCLC cell lines to IR in a manner that was dependent on their ability to suppress FLIP expression and promote activation of caspase-8. Entinostat also enhanced the anti-tumor activity of IR in vivo. Therefore, FLIP down-regulation induced by HDAC inhibitors is a potential clinical strategy to radio-sensitize NSCLC and thereby improve response to radiotherapy. Overall, this study provides the first evidence that pharmacological inhibition of FLIP may improve response of NCSLC to IR.
Resumo:
In dieser Dissertation wird die Rolle des zentralen Kontrollelementes TCE auf unterschiedlichen Ebenen der Genexpression untersucht. Das TCE verhindert die Translation prämeiotisch gebildeter mRNAs in der Spermatogenese von Drosophila bis zu einem späten postmeiotischen Stadium. Gleichzeitig provoziert es Transkriptionsaktivität. Das TCE wurde zunächst in einer kleinen Genfamilie identifiziert und am Beispiel des Gens Mst87F detaillierter untersucht. In EMSA-Experimenten wurde die Komplexbildung mit regulatorischen Proteinen aus Proteinextrakten des Hodengewebes am TCE der Mst87F mRNA nachgewiesen. Massenspektrometrische Analysen ergaben u.a. die Kandidatenproteine Exuperantia (Exu), dFmr1 und CG3213. Die Komplexbildung an einem zweiten Mitglied der Genfamilie - Mst98Ca -, welches sich in der Genstruktur und dem Proteinaufbau von Mst87F unterscheidet, belegt die Allgemeingültigkeit dieser Interaktion. Beim Einsatz von veränderten TCE-Sequenzen ergibt sich ein abweichendes Erscheinungsbild der Komplexe, was mit dem Verlust der Funktion korreliert. Auch die Komplexbildung mit den rekombinanten Proteinen von exuperantia und dfmr1 erfolgt an beiden RNAs in gleicher Weise. In Kombination wird ein stärkerer Shift erzeugt. In einer Exu-defizienten Mutante beobachtet man drastische Veränderungen in der Lokalisation von einem Mst87F-GFP- bzw. CG3213-GFP-Fusionsprotein. Analysen mittels der qPCR zeigen eine drastische Verringerung der Mst87F mRNA Menge. Beides lässt vermuten, dass das Fehlen von Exu bereits in frühen Stadien zu molekularen Defekten führt. Um die Translationskontrolle zu umgehen, wurden Transgene mit einer IRES (aus dem Gen reaper) an verschiedenen Positionen des 5'UTRs erzeugt. Die erwartete Translationsinitiation durch die IRES blieb aus. Northern- und qPCR-Analysen zeigen eine starke Reduktion des mRNA-Niveaus. Somit kann aufgrund der drastischen Deregulation auf Transkriptionsebene der Effekt auf die Translationskontrolle nicht mehr analysiert werden. Überraschenderweise wurden durch die Verwendung einer anderen IRES (aus der Genkassette CG31311) die Expressionscharakteristika des Ursprungsgens auf Mst87F übertragen. Das Fusionsprotein lässt sich plötzlich in den Ommatidien der Komplexaugen nachweisen. Da aus früheren Arbeiten bereits eine Rolle des TCE auf Transkriptionsebene nachgewiesen ist, wurde die Komplexbildung auf Mst87F-DNA-Fragmente mit TCE ausgedehnt. Analysen unter Verwendung der rekombinanten Proteine Exu und dFmr1 verliefen negativ. Daraufhin sollten massenspektrometrische Experimente neue Kandidaten für regulatorische Proteine auf DNA-Ebene identifizieren. Von vier weiteren Kandidaten zeigen zwei unter RNAi-Einfluß komplette Sterilität und starke Defekte in der Spermienentwicklung.
Resumo:
Die RNA-Interferenz (RNAi) ist ein in Eukaryoten weit verbreiteter Mechanismus, der die transkriptionelle oder posttranskriptionelle Stilllegung von Genen beschreibt. Die Spezifität wird dabei durch die Sequenz einer kleinen, nicht-kodierenden RNA gewährleistet. Diese RNA leitet einen Effektorkomplex, dessen Zentrum immer von einem Argonautenprotein gebildet wird, üblicherweise zu einer komplementären mRNA. In der Folge kommt es zum Abbau des Transkripts oder zur Inhibierung der Translation. Aktuelle Veröffentlichungen konnten zudem das Aktivitätsprofil der Argonautenproteine beträchtlich erweitern: Im Zellkern vorkommende Argonautenproteine wurden beispielsweise mit Spleißvorgängen, der Promotorkontrolle von Genen und der DNA-Reparatur in Verbindung gebracht. In den letzten Jahren konnten weitreichende Kenntnisse bezüglich der Kontrolle einiger transposabler Elemente durch RNAi sowie der Biogenese kleiner regulatorischer RNAs in Dictyostelium discoideum und anderen Organismen gewonnen werden. Ein Fokus dieser Arbeit lag zunächst auf der Charakterisierung des Argonautenproteins AgnB und der Identifikation von Interaktionspartnern. Es konnte gezeigt werden, dass AgnB zumindest partiell im Zellkern der Amöbe lokalisiert und dort vermutlich regulatorische Aufgaben wahrnimmt. Gestützt wurde diese Annahme durch die massenspektrometrische und Western Blot basierte Detektion nukleärer Bindungspartner. Weiterführende Analysen konnten AgnB zudem als positiven Regulator für drei entwicklungsregulierte Gene beschreiben und so die Verbindung zum Prozess der RNA activation in der Amöbe herstellen. Identifizierte posttranslationale Modifikationen könnten diesbezüglich die Aktivität des Argonauten steuern. Mit Hilfe von Crosslink-RNA-Immunopräzipitation und anschließender Hochdurchsatz-sequenzierung oder der Northern Blot basierten Auswertung konnte eine Assoziation von AgnB und der Class I RNAs gezeigt werden. Diese Klasse umfasst nicht-kodierende RNAs mit einer Länge von etwa 42 bis 65 Nukleotiden und wurde bisher nicht als Substrat für die RNAi-Maschinerie in D. discoideum angesehen. Ein weiterer Teil dieser Arbeit beschäftigte sich mit dem Einfluss von AgnA und AgnB auf die Promotorbereiche des D. discoideum Retrotransposons DIRS-1. Im Verlauf der Untersuchungen konnte beobachtet werden, dass die Anordnung entgegengesetzt operierender DIRS-1 Promotor-sequenzen für die Stilllegung eines Reportergens ausreichend war. Darauf aufbauend konnte ein DIRS-1 basiertes knockdown System etabliert werden. Mit Hilfe dieses Systems konnten die Proteinmengen ausgewählter Zielgene so effektiv reduziert werden, dass die entsprechenden Stämme den Phänotyp des korrespondierenden knockout Stammes zeigten. Darüber hinaus war es möglich die Proteinreduktion zu modulieren, um so beispielsweise dosisabhängige Effekte zu registrieren. Vorangegangene Arbeiten zur Biogenese von micro (mi)RNAs konnten das RNA-bindende Protein RbdB als eine Hauptkomponente für die Prozessierung maturer miRNAs identifizieren. Der miRNA defiziente RbdB- Stamm wurde in dieser Arbeit zur Identifikation putativer miRNA Ziele genutzt. Dazu wurde sowohl das Transkriptom des D. discoideum Wildtyps als auch des rbdB knockout Stammes in hohem Durchsatz sequenziert, um so differentiell exprimierte Gene zu detektieren. Vielversprechende Kandidaten wurden mittels qRT-PCR verifiziert. Dabei wurde unter anderem ein putativer Transkriptionsfaktor als miRNA target identifiziert, der eine Vielzahl weiterer Gene regulieren könnte. Abschließend konnte in dieser Arbeit gezeigt werden, dass RbdB ebenfalls für die Generierung von small interfering (si)RNAs aus strukturierten Loci von Bedeutung ist. Dies weist auf mindestens zwei unterschiedliche Mechanismen zur siRNA Prozessierung in D. discoideum hin.
Resumo:
In contrast to animals and lower plant species, sperm cells of flowering plants are non-motile and are transported to the female gametes via the pollen tube, i.e. the male gametophyte. Upon arrival at the female gametophyte two sperm cells are discharged into the receptive synergid cell to execute double fertilization. The first players involved in inter-gametophyte signaling to attract pollen tubes and to arrest their growth have been recently identified. In contrast the physiological mechanisms leading to pollen tube burst and thus sperm discharge remained elusive. Here, we describe the role of polymorphic defensin-like cysteine-rich proteins ZmES1-4 (Zea mays embryo sac) from maize, leading to pollen tube growth arrest, burst, and explosive sperm release. ZmES1-4 genes are exclusively expressed in the cells of the female gametophyte. ZmES4-GFP fusion proteins accumulate in vesicles at the secretory zone of mature synergid cells and are released during the fertilization process. Using RNAi knock-down and synthetic ZmES4 proteins, we found that ZmES4 induces pollen tube burst in a species-preferential manner. Pollen tube plasma membrane depolarization, which occurs immediately after ZmES4 application, as well as channel blocker experiments point to a role of K(+)-influx in the pollen tube rupture mechanism. Finally, we discovered the intrinsic rectifying K(+) channel KZM1 as a direct target of ZmES4. Following ZmES4 application, KZM1 opens at physiological membrane potentials and closes after wash-out. In conclusion, we suggest that vesicles containing ZmES4 are released from the synergid cells upon male-female gametophyte signaling. Subsequent interaction between ZmES4 and KZM1 results in channel opening and K(+) influx. We further suggest that K(+) influx leads to water uptake and culminates in osmotic tube burst. The species-preferential activity of polymorphic ZmES4 indicates that the mechanism described represents a pre-zygotic hybridization barrier and may be a component of reproductive isolation in plants.
Resumo:
The first topic area of this thesis involved studies on the accumulation and translocation of glucosinolates (GSs), bioactive secondary plant compounds, in broccoli plants. Changes in GS accumulation and gene expression levels in response to exogeneous methyl jasmonate (MeJA) treatment were analyzed in different tissue types at different developmental stages of broccoli. Greater accumulation of GSs with MeJA treatment was observed in apical leaves of broccoli seedlings and florets of plants at harvest maturity. Increases in indolyl GS in apical leaves of seedlings and florets were coupled with the up-regulation of indolyl GS biosynthesis genes. The accumulation of indolyl GSs appears to be modulated by MeJA treatment in an organ-specific manner for optimal distribution of defense substances in the plant. Metabolic profiling of hydrophilic metabolites using GC-MS demonstrated increased accumulation of various phenolics, ascorbates and amino acids in broccoli tissues after MeJA treatment. Distinct changes in carbohydrate levels observed between different tissues (vegetative leaves and floret tissues) of broccoli plants after treatment suggest that carbon metabolism is differentially modulated by MeJA treatment in different tissue types depending on sink-source relationships. Reduced levels of hexose sugars and tricarboxylic acid intermediates after MeJA treatment may reflect the increased requirement for carbon and energy needed to drive secondary product biosynthesis to accumulate metabolites for defense against insects and other herbivores. Substantial increases of indolyl and aromatic GSs after exogenous treatment with MeJA in stem and petioles of seedlings and the existence of intact indolyl-GS forms in phloem exudates suggest enhanced de novo synthesis in combination with active transport. Indoly GSs share structural similarities with the auxin, IAA, and may interact with components of the auxin transport system for intra- and extra-cellular transport or translocation. Application of the auxin efflux inhibitor, 1-naphthylphthalamic acid (NPA) reduced MeJA-mediated accumulation of indolyl GSs in broccoli florets and seedling tissues. NPA did not inhibit expression of indolyl GS biosynthesis genes shown to be upregulated by MeJA treatment or the accumulation of tryptophan, the amino acid precursor of indolyl GSs. Exogenous application of benzyl GS to Arabidopsis roots induced ectopic expression of the PIN1 protein associated with the auxin transport system similar to treatment with NPA, again suggesting GS interaction with the auxin efflux carrier system. The inhibitory effect of NPA on MeJA-mediated accumulation of GS may be due to competitive binding of NPA to auxin efflux carrier components and that GS transport is mediated by the auxin transport system. The inhibitory effect of NPA on indolyl and aromatic GS accumulation and the bioactivity of exogenous treatment of these GS compounds in PIN1 localization, Arabidopsis root growth, and gravitrophic response suggest that indolyl and aromatic GSs may be antagonistic to IAA transport and biosynthesis. Indolyl and aromatic GSs can also be potentially converted into IAA by hydrolysis. This intrinsic feature of GSs may be the part of a sophisticated regulatory process where the metabolic pathways in the plant shift from active growth to a reversible defense posture in response to biotic or abiotic stress. It seems likely that indolyl and aromatic GSs are important compounds that provide connections between jasmonate and auxin signaling. Further studies are required to reveal the regulatory mechanism for crosstalk between the two hormones. The third part of this research was to investigate effect of selenium fertilization and MeJA treatment on accumulation of GSs in broccoli florets. Increasing dietary intake of the element selenium (Se) has been shown to reduce the risk of cancer. Simultaneous enhancement of both Se and GS concentrations in broccoli floret tissue were conducted through the combined treatment of MeJA with Se fertilization. A low level of Se fertilization (concentration) with MeJA treatment displayed no significant changes in total aliphatic GS concentrations with 90% and 50% increases in indolyl and total GSs concentrations, respectively. This result suggests that Se- and GS-enriched broccoli with improved health-promoting properties can be generated by this combined treatment. The second topic of this thesis was conducted to provide basic information required to improve biomass quality and productivity and develop tools for gene transformation in Miscanthus x giganteus. The perennial rhizomatous grass, Miscanthus x giganteus is an ideal biomass crop due to its rapid vegetative growth and high biomass yield potential. As a naturally occurring sterile hybrid, M. x giganteus must be propagated vegetatively by mechanicalling divided rhizomes or from micropropagated plantlets. The effect of callus type, age and culture methods on regeneration competence was studied to improve regeneration efficiency and shorten the period of tissue culture in M. x giganteus propagation. Seven lignin biosynthesis genes and one putative flowering gene were isolated from M. x giganteus by PCR reactions using maize othologous sequences. Southern hybridization and nuclear DNA content analysis indicated that the genes isolated from M. x giganteus exist in the genome of other Miscanthus species as multiple copies. Analysis of lignin content and histological staining of lignin deposition indicated that higher lignin content is found in mature stem node tissues compared to young leaves and apical stem nodal tissues. Cell wall lignification is associated with increasing tissue maturity in Miscanthus species. RNAi and antisense constructs harboring sequences of these genes were developed to generate Miscanthus transgenic plants with suppressed of lignin biosynthesis and delayed flowering.